“Each dive feels like floating into a science fiction film”

[Image: Schmidt Ocean Institute, via ScienceDaily].

It’s hard to resist a headline claiming that “otherworldly mirror pools and mesmerizing landscapes” have been “discovered on [the] ocean floor.” Otherworldly mirror pools, like some sort of magic cauldron at the bottom of the sea.

But it’s equally hard to parse what exactly this article is stating. It would appear that unusual geological structures found 2,000 meters below the surface of the Gulf of California have had the superficial effect of resembling mirror images of the rocks below them:

While exploring hydrothermal vent and cold seep environments, Dr. Mandy Joye (University of Georgia), and her interdisciplinary research team discovered large venting mineral towers that reach up to 23 meters in height and 10 meters across. These towers featured numerous volcanic flanges that create the illusion of looking at a mirror when observing the superheated (366ºC) hydrothermal fluids beneath them.

In other words, this sounds more like a useful analogy: the rocks up here look like the rocks down there. It’s as if we’re looking into a mirror.

But what I wish this meant—and perhaps it does, but I’m simply misreading the article—is that bizarre thermal effects, combined with unusually high dissolved-metal content in the water, has created a series of mirror planes, or literally reflective, high-density water tables in the deep ocean that visually duplicate anything above or below them.

Because, if so, imagine the possibilities for turning these into lenses, like some wild, far-future, deep-sea water telescope in which light is bounced back and forth amongst dissolved-metal mirrors hovering in the water table. You could concentrate and focus light in the deep ocean, using naturally occurring, highly-mineralized thermal boundaries, perhaps suggesting a new type of visual-communication network in the sea. Future Navy signaling tech, using nothing but water.

Anyway, whatever the case may be, the poetry of this is incredible. Silvered planes in the ocean forming other-worldly, black labyrinths suddenly illuminated by the lights of a passing submarine.

Warnings Along the Inundation Line

[Image: Cover from An Incomplete Atlas of Stones by Elise Hunchuck].

After the Tōhoku tsunami in 2011, one of the most ominous details revealed about the coast where it struck, for those of us not familiar with the region, was that a series of warning stones stand there overlooking the sea, carved with sayings such as, “Do not build your homes below this point!

As part of her recent thesis at the Daniels Faculty of Architecture, Landscape, and Design—a school of the University of Toronto—landscape architect Elise Hunchuck spent the summer of 2015 traveling around Japan’s Sanriku coast, documenting every available tsunami stone in photographs, maps, and satellite views, and accumulating seismic and geological data about each stone’s local circumstances.

The end result was a book called An Incomplete Atlas of Stones. It was inspired, she writes, by “a combined interest in warning systems and cartography.”

[Image: From An Incomplete Atlas of Stones by Elise Hunchuck].

“Rising from the earth,” Hunchuck writes in the book’s introduction, “many [of the warning stones] were placed in the landscape to mark either the height of the inundation line or to mark territory above the inundation line.”

They formed a kind of worst-case boundary line for where solid land meets the sea, the known limit of catastrophic inundation.

[Images: Spreads from An Incomplete Atlas of Stones by Elise Hunchuck].

The book introduces each stone taxonomically:

Each tsunami stone is introduced by its geographic coordinates: latitude, longitude, and elevation. Latitude and longitude site each stone on the surface of the earth while elevation situates each stone in relation to the mean level of the sea. The stones are further situated; first, by the boundaries of the village, town, or city they are located within; second, by their administrative prefecture; and, third, their geographical region. As each stone has been erected in response to a major tsunami, both the year and name of the tsunami is listed in addition to the stone’s relation to the inundation line (below the line, on the line, or above the line) of both its target tsunami and the tsunami of 2011. Each stone, at the time of its erection, was engraved with a message. The stones mapped in this atlas may be considered as belonging to one of two categories: as a memorial, commemorating people and places lost to an earthquake tsunami, or as a lesson, providing a description of events and directions as to where to build, where to evacuate to, and where waters have risen in the past.

Each stone or set of stones thus gets a four-page spread, giving the book a nice structural consistency.

[Images: Spreads from An Incomplete Atlas of Stones by Elise Hunchuck].

As you can also see, satellite shots are used to show the landscape at different states in time: one depicts the coastline immediately following the 2011 tsunami, the next then showing the same locatio after up to five years of rebuilding have taken place.

In some of these comparisons, seemingly nothing at all has changed; in others, it appears nearly the entire landscape has been consumed by forests.

[Images: Spreads from An Incomplete Atlas of Stones by Elise Hunchuck].

The entire book is nearly 250 pages in length, and the selections I’ve chosen here barely scratch the surface. The material Hunchuck has gathered would not only be served well by a gallery installation; the project also sets up an interesting formal precedent for other documentary undertakings such as this.

Given my own background, meanwhile—I am a writer, not an architect—I would love to see more of a reporting angle in future versions of this sort of thing, e.g. interviews with local residents, or even with disaster-response workers, connected to these landscapes through personal circumstance.

The narratives of what these stones are and what they mean would be well-illustrated by more than just data, in other words, including verbal expressions of how and why these warnings were heeded (or, for that matter, fatally overlooked).

[Images: Spreads from An Incomplete Atlas of Stones by Elise Hunchuck].

In any case, the title of Hunchuck’s book—it is an incomplete atlas—also reveals that Hunchuck is still investigating what the stones might mean and how, as a landscape architect, she might respond to them. Her goal, she writes, “is not to offer an explicit response—yet. This incomplete atlas shares the stories of seventy five places, each without a definitive beginning or end.”

Along those lines, I’m reminded of a geologist quoted by the New York Times in their own coverage of the megaliths: “We need a modern version of the tsunami stones.”

Stay tuned for Hunchuck’s forthcoming website with more about the project.

(Vaguely related: Boundary Stones and Capital Magic and, to a certain extent, Watermarks.)

Representing Utopia, or Advertisements of a World to Come

[Image: Test-crash from “California Freeways: Planning For Progress,” courtesy Prelinger Archives].

For those of you here in Los Angeles, I’m thrilled to be hosting an event tomorrow evening at USC with “rogue librarianMegan Prelinger, on the subject of representing utopia.

Megan is cofounder of the San Francisco-based Prelinger Library, an independent media archive specializing “in material that is not commonly found in other public libraries.” Their collection has a strong focus on California history, science, and technology, from obscure technical publications to books on environmental politics, topics that can be tracked throughout Megan’s own work as a researcher and writer.

She is also the author of Another Science Fiction: Advertising the Space Race, 1957-1962 and Inside The Machine: Art and Invention in the Electronic Age. Both books reproduce beautifully designed promotional materials produced as part of an earlier era of science and technology; these include often-overlooked ephemera, such as corporate advertisements and business brochures, or what Alexis Madrigal has described as “the hyperbolic, whimsical world of the advertisements these early aerospace companies created to sell themselves.”

New satellite systems, microchip designs, space program components, electronic home appliances, from televisions to microwaves, to name only a few: all were the subject of visionary business models premised on utopian narratives of the world to come.

Taken as a whole, the Prelinger Library’s collection of these materials raises the interesting possibility that, in order to understand twentieth-century science fiction, we should not only read Octavia Butler, Arthur C. Clarke, or J. G. Ballard, but back-of-magazine ads for firms such as Frigidaire and General Electric. These are corporations, of course, applied futurism sought to create a new world—one in which their own products would be most useful.

[Image: From Another Science Fiction, via Wired].

At the event tomorrow night, we’ll be discussing both of these books, to be sure, but we’ll be doing so in the larger context of utopian representations of the state of California, treating California as a place of technical innovation, artificial control of the natural environment, and even perceived mastery over public health and the risk of disease transmission.

Megan will be showing a handful of short films about these themes, all taken from the Prelinger Archives, and we’ll round out our roughly 45-minute Q&A with open questions from the audience.

The event will cap off 500 Years of Utopia, our long look at the legacy of Sir Thomas More’s book, Utopia, timed for the 500th anniversary of its publication. The accompanying exhibition closes on February 28.

Things kick off at 5pm on Tuesday, February 7th; please RSVP.

Voids and Vacuums

[Image: Google Maps view of Mosul Dam (bottom center) and the huge reservoir it creates].

Dexter Filkins—author of, among other things, The Forever War—has a long new piece in the first 2017 issue of The New Yorker about the impending collapse of Iraq’s Mosul Dam.

The scale of the potential disaster is mind-boggling.

If the dam ruptured, it would likely cause a catastrophe of Biblical proportions, loosing a wave as high as a hundred feet that would roll down the Tigris, swallowing everything in its path for more than a hundred miles. Large parts of Mosul would be submerged in less than three hours. Along the riverbanks, towns and cities containing the heart of Iraq’s population would be flooded; in four days, a wave as high as sixteen feet would crash into Baghdad, a city of six million people. “If there is a breach in the dam, there will be no warning,” Alwash said. “It’s a nuclear bomb with an unpredictable fuse.”

Indeed, “hundreds of thousands of people could be killed,” according to a UN report cited by Filkins.

What’s interesting from a technical perspective is why the dam is so likely to collapse. It’s a question of foundations. The dam was built, Filkins writes, on rock “interspersed with gypsum—which dissolves in contact with water. Dams built on this kind of rock are subject to a phenomenon called karstification, in which the foundation becomes shot through with voids and vacuums.”

Filling those voids with grout is now a constant job, requiring dam engineers to pump huge amounts of cementitious slurry down into the porous rock in order to replace the dissolved gypsum.

[Image: Mosul Dam spillway; photo by U.S. Army Staff Sgt. Brendan Stephens].

At one point, Filkins goes inside the dam where “engineers are engaged in what amounts to an endless struggle against nature. Using antiquated pumps as large as truck engines, they drive enormous quantities of liquid cement into the earth. Since the dam opened, in 1984, engineers working in the gallery have pumped close to a hundred thousand tons of grout—an average of ten tons a day—into the voids below.”

Finding and caulking these voids, Filkins writes, is “deeply inexact.” They are deep underground and remain unseen; they have to be inferred. The resulting process is both absurd and never-ending.

The engineers operating [the grout pumps] can’t see the voids they are filling and have no way of discerning their size or shape. A given void might be as big as a closet, or a car, or a house. It could be a single spacious cavity, requiring mounds of grout, or it could be an octopus-like tangle, with winding sub-caverns, or a hairline fracture. “We feel our way through,” [deputy director Hussein al-Jabouri] said, standing by the pump. Generally, smaller cavities require thinner grout, so Jabouri started with a milky solution and increased its thickness as the void took more. Finally, after several hours, he stopped; his intuition, aided by the pressure gauges, told him that the cavity was full. “It’s a crapshoot,” [civil engineer Azzam Alwash] told me. “There’s no X-ray vision. You stop grouting when you can’t put any more grout in a hole. It doesn’t mean the hole is gone.”

It’s hard not to think of a scene in Georges Perec’s novel Life: A User’s Manual, a scene I have written about before. There, a character named Emilio Grifalconi picks up an old, used table only to find that the support column at its center is “completely worm-eaten.” Slowly, painstakingly, operating by intuition, he fills the worm-eaten passages with a permanent adhesive, “injecting them with an almost liquid mixture of lead, alum and asbestos fiber.”

The table collapses anyway, alas, giving Grifalconi an idea: “dissolving what was left of the original wood” in order to “disclose the fabulous arborescence within, this exact record of the worms’ life inside the wooden mass: a static, mineral accumulation of all the movements that had constituted their blind existence, their undeviating single-mindedness, their obstinate itineraries; the faithful materialization of all they had eaten and digested as they forced from their dense surroundings the invisible elements needed for their survival, the explicit, visible, immeasurably disturbing image of the endless progressions that had reduced the hardest of woods to an impalpable network of crumbling galleries.”

Whether or not such a rhizomatic tangle of grout-filled chambers, linked “voids and vacuums” like subterranean grapes, could ever be uncovered and explored beneath the future ruins of a safely dismantled Mosul Dam is something I will leave for engineers.

[Image: Mosul Dam water release; photo by U.S. Army Staff Sgt. Brendan Stephens].

However, Filkins points out one possible solution that would sidestep all of this: this option, he writes, “which has lately gained currency, is to erect a ‘permanent’ seal of the existing dam wall—a mile-long concrete curtain dropped eight hundred feet into the earth.”

This would not be the only huge subterranean wall to be proposed recently: think of the “giant ice wall” under construction beneath the Fukushima nuclear power plant in Japan: “Japan is about to switch on a huge refrigeration system that will create a 1.5-km-long, underground frozen ‘wall,’ in hopes of containing the radioactive water that’s spilling out of the Fukushima nuclear power plant, which went into meltdown following the earthquake and tsunami of March 2011.”

Read more over at The New Yorker.

An exceptional, extreme, and largely unexplored place

gunnison
The always interesting Center for Land Use Interpretation is seeking proposals from artists, writers, designers, architects, and more to “explore the land and waterscape of the north arm of the Great Salt Lake, known as Gunnison Bay.”

It’s a landscape they describe as “an exceptional, extreme, and largely unexplored place”:

The construction of a filled-in railroad causeway in the late 1950s cut the original lake in half, creating a new, anthropogenic entity, more isolated and saline, that has evolved into a landscape of desiccation that resembles another planet, or this one in some past or future time.

They specifically hope that you’ll include in your exploration of this seemingly parallel terrestriality the so-called Great Salt Lake Exploration Platform, or GSLEP, a pontoon structure built by Chris Taylor and Steve Badgett (it’s a boat).

Proposals are due March 1, 2016.

There is much more information over at CLUI’s website, so check out the full call-for-proposals.

Preparing for the Flood

Despite taking a strong public stance against modern climate science, oil firms such as Mobil and Shell have calculated the effects of climate change-induced sea-level rise into the construction of their drilling platforms and coastal facilities, the Los Angeles Times reports.

The Drowned World

[Image: From Terra Forming: Engineering the Sublime by Adam Lowe and Jerry Brotton].

Artists Adam Lowe and Jerry Brotton’s project Terra Forming: Engineering the Sublime simultaneously explores the history of different geographic projections—including how these have been used to misrepresent and distort the earth’s surface—and at the future of that earth in an era of rising sea levels.

[Image: From Terra Forming: Engineering the Sublime by Adam Lowe and Jerry Brotton].

As Factum Arte explain, their chosen geographic projections offer “a way of engaging with the Earth from different points of view, and reflect historical ways of mapping the world from the Greeks to Google Earth.”

[Image: From Terra Forming: Engineering the Sublime by Adam Lowe and Jerry Brotton].

The projections are milled into beautiful 3D topographic models, with the vertical axis exaggerated to allow for changes in altitude to become visible.

The Andes, for example, become an abrupt spine of skyscraping pinnacles on the edge of an otherwise dead-flat continent, and deep-sea plains become spiky fields of underwater needles and pins.

[Images: From Terra Forming: Engineering the Sublime by Adam Lowe and Jerry Brotton].

As the artists write, “distortion was used because without it the globe’s surface would appear almost totally flat”—which interestingly suggests that representational distortion, with a great deal of irony, is actually central to giving our planet geographic legibility.

To map it or to know it, the implication seems to be, you must first alter it.

[Image: From Terra Forming: Engineering the Sublime by Adam Lowe and Jerry Brotton].

This is only half the project, however.

The artists refer to Terra Forming as “a cartographic response to the advent of the Anthropocene“—which is why the resulting topographic models are then flooded.

[Images: From Terra Forming: Engineering the Sublime by Adam Lowe and Jerry Brotton].

“The installation will mimic the passage of time as well as space,” Factum Arte write, “by flooding the world with water over several days, until we reach current sea levels; the world will then be flooded completely, leaving us with a drowned world, a prescient image for those parts of the world facing rising sea levels, as well as those such as parts of the Arabian Peninsula which is trying to reclaim land from the sea.”

You can watch a short video of the project’s gradual submergence on Vimeo—or embedded below.



And you can read much more about the project over at Factum Arte.

Liquid Quarries and Reefs On Demand

[Image: Micromotors at work, via UCSD/ScienceDaily].

Tiny machines that can extract carbon dioxide from water might someday help deacidify the oceans, according to a press release put out last week by UCSD.

Described as “micromotors,” the devices “are essentially six-micrometer-long tubes that help rapidly convert carbon dioxide into calcium carbonate, a solid mineral found in eggshells, the shells of various marine organisms, calcium supplements and cement.”

While these are still just prototypes, and are far from ready actually to use anywhere in the wild, they appear to have proven remarkably effective in the lab:

In their experiments, nanoengineers demonstrated that the micromotors rapidly decarbonated water solutions that were saturated with carbon dioxide. Within five minutes, the micromotors removed 90 percent of the carbon dioxide from a solution of deionized water. The micromotors were just as effective in a sea water solution and removed 88 percent of the carbon dioxide in the same timeframe.

The implications of this for marine life are obviously pretty huge—after all, overly acidic waters mean that shells are difficult, if not impossible, to form, so these devices could have an enormously positive effect on sea life—but these devices could also be hugely useful in the creation of marine limestone.

As UCSD scientists explain, the micromotors would “rapidly zoom around in water, remove carbon dioxide and convert it into a usable solid form.” A cloud of these machines could thus essentially precipitate the basic ingredients of future rocks from open water.

[Image: A Maltese limestone quarry, via Wikipedia].

At least two possibilities seem worth mentioning.

One is the creation of a kind of liquid quarry out of which solid rock could be extracted—a square mile or two of seawater where a slurry of calcium carbonate would snow down continuously, 24 hours a day, from the endless churning of invisible machines. Screen off a region of the coast somewhere, so that no fish can be harmed, then trawl those hazy waters for the raw materials of future rock, later to be cut, stacked, and sold for dry-land construction.

The other would be the possibility of, in effect, the large-scale depositional printing of new artificial reefs. Set loose these micromotors in what would appear to be a large, building-sized teabag that you slowly drag through the ocean waters, and new underwater landforms slowly accrete in its week. Given weeks, months, years, and you’ve effectively 3D-printed a series of new reefs, perfect for coastal protection, a new marine sanctuary, or even just a tourist site.

In any case, read more about the actual process over at UCSD or ScienceDaily.

Water & Power

[Image: Via the Library of Congress].

While going through a bunch of old photos of Los Angeles on the Library of Congress website for a project I’m doing at USC this year, I was amazed by these interior shots of the F. E. Weymouth Filtration Plant at 700 North Moreno Avenue in L.A.

Despite being designed for the administration of an urban water-processing site, the interiors seem to play with some strange, Blade Runner-like variation on Byzantine modernism, where federalist detailing meets a hydrological Babylon.

[Image: Via the Library of Congress].

As the open plan interior of a contemporary home, this place would almost undoubtedly show up on every design website today—imagine a better railing on the central staircase, a galley kitchen on one side, a bed lit by retro-styled fluorescent tubes at the far end, some bold moments of color—but it’s just a piece of everyday municipal infrastructure.

[Image: Via the Library of Congress].

In any case, continuing the vaguely sci-fi feel, there is even a tiled fountain—a Mediterranean concession to the building’s role in water filtration—on one wall, emphasized by these amazing lighting features, yet it looks more like a film set, both ancient and futuristic.

[Image: Via the Library of Congress].

Alas, I’m not a huge fan of the exterior, although it is, in fact, a fairly amazing example of municipal design gone more sacred than profane. But an equally streamlined modernism in keeping with those interiors would have made this place totally otherworldly.

[Image: From the Library of Congress].

Finally, the marbled lobbies continue the surreal mix-up of styles, eras, and materials with something that could perhaps be described as Aztec corporatism with its huge graphic seal and other geometric motifs.

[Image: From the Library of Congress].

For shots of the actual waterworks, click through to the Library of Congress.

Abandoned Basements as Stormwater Basins

[Image: Rendering of a possible “BaseTern” landscape by students Brett Harris, Andrew D’Arcy, and Heidi Petersen, via Landscape Architecture Magazine].

Not all the news coming out of Milwaukee involves misguided highway megaprojects or tax-funded crony capitalism—though there is that.

For example, Wisconsin governor Scott Walker—confusing an earlier generation’s urban mistakes with how a city is meant to function—has been plowing billions of dollars’ worth of taxpayer money into “freeway megaprojects” for which “the pricetag got so big that leaders from his own party rejected his plan as fiscally irresponsible, leaving the state budget in limbo,” Politico reports:

As the state has shifted resources into freeway megaprojects, 71 percent of [Wisconsin’s] roads are in mediocre or poor condition, according to federal data. Fourteen percent of its bridges are structurally deficient or functionally obsolete, which is actually better than the national average. Walker and his fellow Republicans have killed plans for light rail, commuter rail, high-speed rail, and dedicated bus lanes on major highways, so there is almost no public transportation connecting Milwaukee to its suburbs, intensifying divisions in one of the nation’s most racially, economically and politically segregated metropolitan areas. Yet Walker, who is running for president as a staunch fiscal conservative, has pushed a $250 million-per-mile plan to widen Interstate 94 between the Marquette and the Zoo despite fierce local opposition.

If that sounds both avoidable and unfortunate, consider the fact that “Walker also killed a ‘Complete Streets’ program that pushed road builders to accommodate bicyclists and pedestrians.”

[Images: (top) Milwaukee’s Marquette interchange, nearly the same size as the city it cuts through; (bottom) Milwaukee before the interchange. Images via Politico].

At the same time, Walker has also “championed a high-profile proposal to spend a quarter of a billion dollars of taxpayer money to help finance a new Milwaukee Bucks arena—all while pushing to slash roughly the same amount from state funding for higher education,” the International Business Times reports.

But, hey, why does Wisconsin need universities when everyone can just go to an NBA game? Not that benefitting the public is even Walker’s goal: “One of those who stands to benefit from the controversial initiative is a longtime Walker donor and Republican financier who has just been appointed by the governor to head his presidential fundraising operation.”

In any case, an interesting landscape test-project is currently underway in Milwaukee, called the “BaseTern” program.

As the city explains it, a “BaseTern” is “an underground stormwater management or rainwater harvesting structure created from the former basement of an abandoned home that has been slated for demolition.” Why is the city doing this?

By using abandoned basements, the City saves the cost of demolition on these structures (filing the basement and grading the surface) and on excavation for the new structure. In addition, BaseTerns provide significant stormwater storage capacity on a single site, the equivalent of up to 600 rain barrels.

The result, the city is keen to add, is “not an open pit. Rather a BaseTern is a covered structure, which is covered with topsoil and grass, and will appear the same as conventional vacant lot.”

In their July 2015 issue, Landscape Architecture Magazine explained that this is, in fact, “the world’s first such system.” Conceived—and actually trademarked—by a city official named Erick Shambarger, the idea was inspired by a GIS-fueled discovery that the worst flooding in the city always “occurred in neighborhoods with high rates of foreclosures. The city controls roughly 900 foreclosed properties, many of which it plans to demolish. Shambarger figured the city could preserve the basement structure and put it to use.”

[Images: Two BaseTern design diagrams, taken from Milwaukee’s “Vacant Basements for Stormwater Management Feasibility Study“].

While there is something metaphorically unsettling in the idea that parts of a blighted, financially underwater neighborhood might soon literally be underwater—transformed into a kind of urban sponge for the rest of Milwaukee—the notion that the city can discover in its own economic misfortune a possible new engineering approach for dealing with seasonal flooding and super-storms is an inspiring thing to see.

The BaseTern program also potentially suggests a stopgap measure for coastal cities set to face rising sea levels well within the lifetimes of the coming generation.

In the all but inevitable managed retreat from the coast that seems set to kick off both en masse and in earnest by midcentury—something that is already happening in New York City, post-Sandy—perhaps the subterranean ruins of old neighborhoods left behind can be temporarily repurposed as minor additions to a broader coastal program intent on reducing flooding for residents further inland.

Before, of course, those underground voids—former guest bedrooms, dens, man caves, she sheds, and basements—are inundated for good.

Read more about BaseTerns over at Landscape Architecture Magazine.