Institute for Controlled Speleogenesis

Recently, I’ve been looking back at a collaborative project with John Becker of WROT Studio.

The “Institute for Controlled Speleogenesis” (2014) was a fictional design project we originally set in the vast limestone province of Australia’s Nullarbor Plain.

[Image: A rock-acid drip-irrigation hub for the “Institute for Controlled Speleogenesis,” a collaboration between BLDGBLOG and WROT Studio; all images in this post are by John Becker of WROT Studio.]

The Nullarbor Plain is a nearly treeless region, roughly the size of Nebraska. It is also the world’s largest karst landscape, and thus home to hundreds of natural caves.

“There is a great variety of cave types under the Nullarbor,” as Australian Geographic explains, “but the plain’s most interesting features are long, deep systems (such the Old Homestead Cave), which are found only here, in the U.S. state of Florida, and on Mexico’s Yucatan Peninsula, all of which all have similar karst limestone layers.”

The Institute for Controlled Speleogenesis was imagined as a remote, thinly staffed site for applied geological research, where huge artificial caves could be generated below the Earth’s surface using a special acid mix—as safe as vinegar, but, importantly for our project, capable of dissolving limestone on a greatly accelerated timescale.

Subterranean spaces of every conceivable size, from tiny hollows and capillaries to vast megastructures, could thus be acid-etched into even the deepest karst formations, both rapidly and over decadal expanses of time.

The resulting rooms, tunnels, and interconnected cave systems could be used for a wide range of purposes: generating speleo-pharmaceuticals, for example, as well as testing recreational caving equipment, experimenting with underground agricultural systems, or developing new technologies for subterranean navigation, communication, inhabitation, and mapping.

As John writes on his own website—where you can also see larger, more-detailed versions of these images—our “aberrant caverns,” in John’s phrase, would be monitored in real-time by autonomous systems operating 24 hours a day.

The ever-growing caves could thus be left on their own, unsupervised, while the acid-drip system gradually etches down, drop by drop, reaching increasingly remote underground realms that the acid itself creates.

As a preliminary step, different blends of rock-acid mix would first be tested on large pillars aboveground, to choose or highlight specific spatial effects.

Controlled showers of rock-acid would result in totem-like sculptures, like industrial-scale menhirs—Stone Age ritual artifacts by way of 21st-century geochemistry.

Once the desired effects have been achieved, fields of bladders, nozzles, and injection arrays can be programmed and choreographed to enlarge an artificial cave mouth.

The irrigation system can then be continued underground. Necklaces of acid-drip arrays can easily be extended underground in order to expand the cave itself, but also to lengthen certain tunnels or to experiment with architecturally stable cave formations.

As John explains, the images seen here depict an “injection array using a pressurized system to move large quantities of solution to underlying areas of the cave network. These injection sites are outwardly the tell for a hidden world below. Much like oil derricks extracting resources from the earth, their density and scale across the landscape give you a glimpse into areas afforded the most resources for injection.”

Our initial siting of this in the Nullarbor Plain was motivated entirely by geology, but other large limestone provinces—from Kentucky or northern Arizona to southern France, and from California’s Lucerne Valley to Egypt—would also be good hosts.

While we looked into standard mining acids, currently used for stripping tailings piles of valuable minerals, it quickly became apparent that specific kinds of acetic acid—again, no more toxic than vinegar—offered a more viable approach for creating a maximally spacious site with minimally polluting environmental implications. (Of course, should someone without such qualms want to explore this set-up with no concern for its ecological impact, then much stronger acids capable of dissolving much stronger rocks could also be explored.)

In 2022, I was excited to see that John returned to this project, generating a new series of images using AI image-generation software trained on our earlier project documentation. Given their provenance, the resulting images are unsurprisingly cinematic—equal parts cyberpunk dereliction and underworldly luminescence.

Over the years, John has become a wizard at producing Modernist geological imagery, publishing images on his Instagram account—rock sculpted as smooth as paper and as diaphanous as a veil or curtain.

Check out his own website for more images of the Institute for Controlled Speleogenesis and other recent projects. And, if you like this, don’t miss “Architecture-by-Bee and Other Animal Printheads,” an earlier project of ours that I’m proud to say was published in Paul Dobraszczyk’s excellent recent book, Animal Architecture: Beasts, Buildings and Us.

(All images in this post are by John Becker of WROT Studio. This post contains a Bookshop.org affiliate link, meaning that I might receive a small percentage of any resulting sales.)

World Store

There was an article last year in the New York Times about a California start-up called Inversion that wants to “speed delivery of important items by storing them in orbit.”

Their goal is to build “earth-orbiting capsules”—“hundreds or thousands of containers”—that could “deliver goods anywhere in the world from outer space.”

The company’s founders imagine the capsules could store artificial organs that are delivered to an operating room within a few hours or serve as mobile field hospitals floating in orbit that would be dispatched to remote areas of the planet.

Purely in terms of this logistical vision, I’m reminded of a DARPA proposal called the “Upward Falling Payloads” program. For that, critical goods, including weapons and war-fighting materiel—but, why not, perhaps also emergency organs for frontline surgery—could be stored underwater, in the middle of the ocean, using “deployable, unmanned, distributed systems that lie on the deep-ocean floor in special containers for years at a time. These deep-sea nodes would then be woken up remotely when needed and recalled to the surface. In other words, they ‘fall upward.’”

Whether or not either one of these plans is technically feasible is less interesting to me than the underlying idea of caching valuable objects in remote locations for later recovery. The world would become a series of hiding spots for artifacts and tools of potential future importance, the Earth reengineered for its archival utility.

Perhaps the Anthropocene is really just a world denuded of its ecological functions, all life other than human vacuously replaced by landscape-scale storage facilities housing just-in-time detritus—the psychosis of a species surrounded only by things it can store and retrieve at will.

Potsdamer Sea

[Image: From Kiessling’s Grosser Verkehrs-Plan von Berlin (1920).]

It’s funny to be back in Berlin, a city where I once thought I’d spend the rest of my life, first arriving here as a backpacker in 1998 and temporarily moving in with a woman 14 years older than me, who practiced Kabbalah and had twin dogs and who, when seeing that I had bought myself a portable typewriter because I was going through a William Burroughs phase, blessed it one night in her apartment near the synagogue in a ceremony with some sort of bronze sword. It’s almost literally unbelievable how long ago that was. More years have passed since I spent time in Berlin—supposedly to study German for grad school, but in reality organized entirely around going to Tresor—than I had been alive at the time.

Because I’m here again on a reporting trip, I was speaking yesterday evening with a former geophysicist who, when the Berlin Wall came down, found work doing site-remediation studies and heritage-mapping projects on land beneath the old path of the Wall. He was tasked with looking for environmental damage and unexploded ordnance, but also for older foundations and lost buildings, earlier versions of Berlin that might pose a structural threat to the city’s future or that needed to be recorded for cultural posterity.

Ironically, in a phase of my life I rarely think about, I wrote my graduate thesis on almost exactly this topic, focused specifically on Potsdamer Platz—once divided by the Wall—and the role of architectural drawings in communicating historical context. When I was first here, in 1998 into early 1999, Potsdamer Platz was still a titanic hole in the ground, an abyss flooded with groundwater, melted snow, and rain, a kind of maelström you could walk over on pedestrian bridges, where engineering firms were busy stabilizing the earth for what would become today’s corporate office parks.

As I told the former geophysicist last night, I remember hearing at the time that there were people down there, SCUBA diving in the floodwaters, performing geotechnical studies or welding rebar or looking for WWII bombs, I had no idea, but, whatever it was, their very existence took on an outsized imaginative role in my experience of the city. Berlin, destroyed by war, divided by architecture, where people SCUBA dive through an artificial sea at its broken center. It felt like a mandala, a cosmic diagram, with this inverted Mt. Meru at its heart, not an infinite mountain but a bottomless pit.

What was so interesting to me about Berlin at the time was that it felt like a triple-exposure photograph, the city’s future overlaid atop everything else in a Piranesian haze of unbuilt architecture, whole neighborhoods yet to be constructed, everything still possible, out of focus somehow. It was incoherent in an exhilaratingly literal sense. In Potsdamer Platz, what you thought was the surface of the Earth was actually a bridge; you were not standing on the Earth at all, or at least not on earth. It was the Anthropocene in miniature, a kind of masquerade, architecture pretending to be geology.

The more that was built, however, the more Berlin seemed to lose this inchoate appeal. The only people with the power to control the rebuilding process seemed to be automobile consortiums and international hotel groups, office-strategy consultants not wizards and ghosts or backpacking writers. Perhaps the city still feels like that to other people now—unfinished, splintered, jagged in a temporal sense, excitingly so, a city with its future still taking shape in the waves of an underground sea—but it seems to me that Berlin’s blur has been misfocused.

In any case, with the caveat that I am in Berlin this week for a very specific research project, so many people I’ve met have pointed to the fall of the Wall as an explosive moment for geophysical surveys in the East. Engineers were hired by the dozen to map, scan, and survey damaged ground left behind by a collapsed imperialist Empire, and the residues of history, its chemical spills and lost foundations, its military bunkers and archaeological remains, needed to be recorded. The ground itself was a subject of study, an historical medium. On top of that, new freeways were being built and expanded, heading east into Poland—and this, too, required geophysical surveys. The future of the region was, briefly, accessible only after looking down. The gateway to the future was terrestrial, a question of gravel and sand, forgotten basements and fallen walls.

The SCUBA divers of the Potsdamer Sea now feel like mascots of that time, dream figures submerged in the waves of a future their work enabled, swimming through historical murk with limited visibility and, air tanks draining, limited time. Their pit was soon filled, the hole annihilated, and the surface of the Earth—which was actually architecture—returned with amnesia.

Planetary Supercinema

[Image: Courtesy Capella Space.]

The Geocinema group is hosting a six-week class this spring called Signals and Storms, a kind of planetary-scale media studies workshop. Participants will research and critique what they describe as an emerging super-system of always-on recording technologies, from “geosensors” and street-level surveillance cameras up to weather satellites—tools that suggest a future possible medium for “largely distributed infrastructures of filmmaking.”

The image above, meanwhile, comes courtesy of Capella Space and depicts a new satellite design—as of January 2020—that allows the company to produce “on-demand observations of anywhere on Earth” (what they have elsewhere called “persistent monitoring from space”).

These sorts of technologies—though currently out of reach for the typical budgets of a film studio, let alone an arts group—are part of an increasingly omnipresent media-production infrastructure, one that continuously records the surface of the Earth in real time and in great detail, or where Geocinema gets its name in the first place.

Read more over at Signals and Storms.

(Spotted via @wmmna.)

Geomedia, or What Lies Below

[Image: Courtesy USGS.]

I love the fact that the U.S. Geological Survey had to put out a press release explaining what some people in rural Wisconsin might see in the first few weeks of January: a government helicopter flying “in a grid pattern relatively low to the ground, hundreds of feet above the surface. A sensor that resembles a large hula-hoop will be towed beneath the helicopter,” the USGS explains—but it’s not some conspiratorial super-tool, silently flipping the results of voting machines. It’s simply measuring “tiny electromagnetic signals that can be used to map features below Earth’s surface,” including “shallow bedrock and glacial sediments” in the region.

Of course, the fictional possibilities are nevertheless intriguing: government geologists looking for something buried in the agricultural muds of eastern Wisconsin, part Michael Crichton, part Stephen King; or CIA contractors, masquerading as geologists, mapping unexplained radio signals emanating from a grid of points somewhere inland from Lake Michigan; or a rogue team of federal archaeologists searching for some Lovecraftian ruin, a lost city scraped down to its foundations by the last Ice Age, etc. etc.

In any case, the use of remote-sensing tools such as these—scanning the Earth to reveal electromagnetic, gravitational, and chemical signatures indicative of mineral deposits or, as it happens, architectural ruins—is the subject of a Graham Foundation grant I received earlier this autumn. That’s a project I will be exploring and updating over the next 10 months, combining lifelong obsessions with archaeology and ruins (specifically, in this case, the art history of how we depict destroyed works of architecture) with an interest in geophysical prospecting tools borrowed from the extraction industry.

In other words, the same remote-sensing tools that allow geological prospecting crews to locate subterranean mineral deposits are increasingly being used by archaeologists today to map underground architectural ruins. Empty fields mask otherwise invisible cities. How will these technologies change the way we define and represent architectural history?

[Image: Collage, Geoff Manaugh, for “Invisible Cities: Architecture’s Geophysical Turn,” Graham Foundation 2020/2021; based on “Forum Romano, Rome, Italy,” photochrom print, courtesy U.S. Library of Congress.]

For now, I’ll just note another recent USGS press release, this one touting the agency’s year-end “Mineral Resources Program Highlights.”

Included in the tally is the “Earth MRI” initiative—which, despite the apt medical-imaging metaphor, actually stands for the “Earth Mapping Resource Initiative.” From the USGS: “When learning more about ancient rocks buried deep beneath the surface of the Earth, it may seem surprising to use futuristic technologies flown hundreds of feet in the air, but that has been central to the USGS Earth Mapping Resource Initiative.”

[Image: A geophysical survey of northwestern Arkansas, courtesy USGS.]

What lies below, whether it is mineral or architectural, is becoming accessible to surface view through advanced technical means. These new tools often reveal that, beneath even the most featureless landscapes, immensely interesting forms and structures can be hidden. Ostensibly boring mud plains can hide the eroded roots of ancient mountain chains, just as endless fields of wheat or barley can stand atop forgotten towns or lost cities without any hint of the walls and streets beneath.

The surface of the Earth is an intermediary—it is media—between us and what it disguises.

(See also, Detection Landscapes and Lost Roads of Monticello.)

The Age of Horror

[Image: “Clouds, Sun and Sea” (1952) by Max Ernst, courtesy Phillips.]

There’s an interesting space where early modern, mostly 19th-century earth sciences overlap with armchair conjectures about the origins of human civilization. It’s a mix of pure pseudo-science, science-adjacent speculation, and something more like theology, as writers of the time tried to adjust new geological hypotheses and emerging biological evidence—Charles Lyell, Charles Darwin, etc.—to fit with Biblical creation myths and cosmogonic legends borrowed from other cultures. Was there really a Flood? If humans are separate from the animal kingdom, how did we first arrive or appear on Earth?

It is not those particular questions that interest me—although, if I’m being honest, I will happily stay at the table for hours talking with you about the Black Sea deluge hypothesis or the history of Doggerland, two of the most interesting things I’ve ever read about, and whether or not they might have influenced early human legends of a Flood.

Instead, there are at least two things worth pointing out here. One is that these sorts of people never really went away, they just got jobs at the History Channel.

The other is that impossibly long celestial cycles, ancient astronomical records, the precession of the Earth’s poles, and weird, racist ideas about the “fall of Man” all came together into a series of speculations that seem straight out of H.P. Lovecraft.

Take, for example, Sampson Arnold Mackey and his “Age of Horror.”

[Image: Diagram from The Mythological Astronomy in Three Parts by Sampson Arnold Mackey.]

As Joscelyn Godwin writes in a book called The Theosophical Enlightenment, Mackey—a shoemaker, not an astronomer—was fascinated by “the inclination of the earth’s axis and its changes over long spans of time. Astronomers have known at least since classical times that the Earth’s axis rotates once in about 25,920 years, pointing successively at different stars, of which the current one is Polaris, the North Star. One result of this cycle is the ‘precession of the equinoxes,’ according to which the spring-point of the sun moves around the twelve signs of the zodiac, spending about 2160 years in each sign.”

Of course, the assumption that these signs and stars might somehow influence life on Earth is the point at which astronomy morphs into astrology.

Godwin goes on to explain that—contrary to “most astronomers” of his time—Mackey assumed the Earth’s precession was dramatic and irregular, to the extent that, as Mackey speculated, “the earth’s axis describes not a circle but an alternately expanding and contracting spiral, each turn comprising one cycle of the precession of the equinoxes, and at the same time altering the angle of inclination by four degrees.”

The upshot of this is that, at various points in the history of our planet, Mackey believed that the Earth’s “inclination was much greater, to the point at which it lay in the same plane as the earth’s orbit around the sun.”

This sounds inconsequential, but it would have had huge seasonal and climatic effects. For example, Godwin explains, “At the maximum angle, each hemisphere would be pointed directly at the sun day and night during the summer, and pointed away for weeks on end during the winter. These extremes of light and dark, of heat and cold, would be virtually insupportable for life as we know it. In Mackey’s words, it was an ‘age of horror’ for the planet.”

[Image: Diagram from The Mythological Astronomy in Three Parts by Sampson Arnold Mackey.]

The flipside of this, for Mackey, is that the Earth would have gone back and forth, over titanic gulfs of time, between two angular extremes. Specifically, his model required an opposite extreme of planetary rotation in which “there would be no seasons on earth, but a perpetual spring and a ‘golden age.’ Then the cycle would begin again.”

None of this would have been recent: “Mackey dates the Age of Horror at 425,000 years in the past, the Golden Age about a million years ago, and its recurrence 150,000 years from now.”

Nevertheless, Godwin writes, “It was essential to [Mackey’s] system of mythography that the Age of Horror should have been witnessed and survived by a few human beings, its dreadful memory passing into the mythology of every land.”

For Mackey, the implications of this wobble—this dramatic precession between a Golden Age and an Age of Horror, between the darkness of Hell and the sunlight of Paradise—would have been highly significant for the evolution of human civilization.

In other words, either we are coming out of an age of eternal winter and emerging slowly, every minute of the day, every year of the century, into a time of endless sunlight and terrestrial calm, or we are inevitably falling, tipping, losing our planetary balance as we pass into near-permanent night, a frozen Hell of ruined continents and dead seas buried beneath plates of ice.

[Image: The August 2017 total eclipse of the sun, via NASA.]

One of the weirder aspects of all this—something Godwin himself documents in another book, called Arktos—is that these sorts of ideas eventually informed, among other things, Nazi political ideology and even some of today’s reactionary alt-right.

The idea that there was once a Hyperborean super-civilization, a lost Aryan race once at home in the Arctic north, lives on. It’s what we might call the cult of the fallen Northener.

[Image: “Cairn in Snow” (1807) by Caspar David Friedrich.]

What actually interests me here, though, is the suggestion that planetary mega-cycles far too long for any individual human life to experience might be slowly influencing our myths, our cultures, our consciousness (such as it is).

My point is not to suggest that this is somehow true—to say that astrologers and precession-truthers are right—but simply to say that this is a fascinating idea and it has within it nearly limitless potential for new films, novels, and myths, stories where entirely different ways of thinking emerge on planets with extreme seasonal inclinations or unusual polar relationships to the stars.

[Image: From Pitch Black, via Supernova Condensate.]

Think of the only good scene in an otherwise bad movie, 2000’s Pitch Black, where the survivors of a crash on a remote human planetary outpost discover an orrery—a model of the planet they’re standing on—inside an abandoned building.

Playing with the model, the survivors realize that the world they’ve just crashed on is about to be eclipsed by a nearby super-planet, plunging them into a night that will last several months (or weeks or years—I saw the film 20 years ago and don’t remember).

Just imagine the sorts of horrors this might inspire—an entire planet going dark perhaps for centuries, doomed by its passage through space.

[Image: Adolph Gottlieb, courtesy Hollis Taggart.]

In any case, the idea that the earliest human beings lived through something like this hundreds of thousands of years ago—an imminent night, a looming darkness, an Age of Horror that imprinted itself upon the human imagination with effects lasting to this day—would mean that what we think of as human psychology is just an angular epiphenomenon of planetary tilt. Call it orbital determinism.

(Very vaguely related: a planet without a sun.)

PoMo- Mytho- Geo-

[Image: “Model of an Earth Fastener on the Delphi Fault (Temple of Apollo)” (2019) by Kylie White; photo courtesy Moskowitz Bayse.]

Artist Kylie White has two new pieces up in a group show here in Los Angeles, called Grammars of Creation, on display at Moskowitz Bayse till March 16th, which I will return to in a second.

White had a great solo show at the same gallery almost exactly a year ago, featuring a series of geological faults modeled in richly veined, colored marble Most also incorporated brass details, acting as so-called “Earth fasteners.”

[Images: From Six Significant Landscapes by Kylie White; photos courtesy Moskowitz Bayse.]

Gallery text explained at the time that White’s works “are at once sculptures, scale models, geologic diagrams, and proposals; each depicts an active fault line, a place of displaced terrain due to tectonic movement.”

The “proposal” in each work, of course, would be the fasteners: metal implants of a sort meant to span the rift of an open fault.

[Image: “Model of Earth Fastener on a Transform Fault; 1”=10” (2017) by Kylie White; note that this piece was not featured in Six Significant Landscapes. Photo courtesy Moskowitz Bayse.]

White’s fasteners seemed to suggest at least two things simultaneously: that perhaps we could fix the Earth’s surface in place, if only we had the means to stop faults from breaking open, but also that human interventions such as these, in otherwise colossal planetary landscapes, would be trivial at best, more sculptural than scientific, just temporary installations not permanent features of a changing continent.

[Image: From Six Significant Landscapes by Kylie White; photo courtesy Moskowitz Bayse.]

As I struggled to explain to my friends, however, while describing White’s work, the visual effect was strangely postmodern, almost tongue-in-cheek, as if her sculptures—all green marble blocks and inlaid brass—could have passed for avant-garde luxury furniture items from the 1980s (and, to be clear, I mean this in a good way: imagine scientific models masquerading as luxury goods).

[Images: Details from Six Significant Landscapes by Kylie White; photos by BLDGBLOG.]

All of which means I sort of laughed when I saw these more recent works that seem to take this postmodern aesthetic to a new height, complete with two fault models mounted atop faux-Greek columns.

[Image: “Model of an Earth Fastener on the Hierapolis Fault (Plutonion)” (2019) by Kylie White; photo courtesy Moskowitz Bayse.]

It’s like plate tectonics meets Learning From Las Vegas, by way of Greek mythology.

Because the columns are also a fitting reference to the pieces’ own subject matter: one, seen at the top of this post, is called “Model of an Earth Fastener on the Delphi Fault (Temple of Apollo)” and the other, immediately above, is “Model of an Earth Fastener on the Hierapolis Fault (Plutonion).” They perhaps suggest an entirely new approach to natural history museum displays—boldly gridded rooms filled with heroic blocks of the Earth’s surface, bathed in neon. Pomotectonics.

In any case, more information about the show is available at Moskowitz Bayse. It closes on March 16th, 2020, although White apparently has another, currently untitled solo show coming up in 2021.

Class Action

[Image: Still from the end of Garbage, Gangsters and Greed.]

I have a long new feature up at The Guardian this weekend that tells the story of an English teacher at Middletown High School, in upstate New York, named Fred Isseks. In the early 1990s, Isseks was given the task of instructing teenage students at the school in how to use a bunch of new video cameras the school had acquired.

To the school’s surprise—and to some administrators’ long-term political frustration—Isseks’s students quickly formed an investigative journalism unit, taking on local politicians and the New York Mafia, and producing a feature-length documentary about the illegal dumping of toxic waste in local landfills.

The resulting film, called Garbage, Gangsters and Greed, made it as far as the Clinton White House, helped turn public opinion against the landfills, leading to their closure, and helped to reinvigorate official New York State hearings, run by Assemblyman Maurice Hinchey, on the subject of organized crime families and the illegal hauling of toxic waste.

The story of the students is pretty incredible—involving death threats, threats of arrest, trespassing onto contaminated land, and more—and I was thrilled to be able to meet or speak with several of them, even to tour the old high school with Fred Isseks in tow. It is not an exaggeration to say that Isseks’s class changed the direction of those students’ lives, as many now work in environmental law or film and television. (One former student, Rachel Raimist, even has a media center named after her at the University of Minnesota.)

The whole thing really pivots on Isseks’s belief that teenagers need to be given projects of true meaning and significance, not simply assigned more tests to take. Indeed, Isseks himself later went on—while still teaching at the high school but after a final cut of the landfill documentary had been completed—to earn a Ph.D. at the European Graduate School, studying under Wolfgang Schirmacher.

His thesis would later be published under the name Media Courage: Impossible Pedagogy in an Artificial Community, and it includes a chapter that, as I describe it in the Guardian piece, advocates for “the philosophical potential of the American high school system. [Isseks’s] belief that teenagers need to be given work with genuine meaning and consequence in the world would shape his entire teaching career and, in the process, change his students’ lives.”

Of course, the rabbit hole of Mob connections to toxic waste in the United States is bottomless, and the true consequences of illegal disposal—particularly, the long-term medical and environmental effects—are yet to be fully accounted for.

I will undoubtedly come back to this topic, but, for now, check out the Guardian piece online (or in this weekend’s print edition), watch the students’ film in its entirety over at YouTube, and click through to Fred Isseks’s blog, where I first read about all of this. His long post putting the landfills into a deeper historical and geological context is superb.

(A brief note from the small-world files: my awareness of Fred Isseks came entirely through a friendly tip from my friend, Ed Keller, who had read an earlier post here on BLDGBLOG called “Terrestrial Warfare, Drowned Lands.” The “Drowned Lands” are not only the area of New York State where Ed Keller lives, but are the same region where the toxic landfills explored by Isseks and his students are all located. I owe a huge thanks to Ed for the heads up!)

Walker Lane Redux

It’s been an interesting few days here in Southern California, with several large earthquakes and an ensuing aftershock sequence out in the desert near Ridgecrest. Ridgecrest, of course, is at the very southern edge of the Walker Lane—more properly part of the Eastern California Shear Zone—a region of the country that runs broadly northwest along the California/Nevada state border that I covered at length for the May 2019 issue of Wired.

[Image: My own loose sketch of the Walker Lane, using Google Maps].

To make a story short, a handful of geologists have speculated, at least since the late 1980s, that the San Andreas Fault could actually be dying out over time—that the San Andreas is jammed up in a place called the “Big Bend,” near the town of Frazier Park, and that it is thus losing its capacity for large earthquakes.

As a result, all of that unreleased seismic strain has to go somewhere, and there is growing evidence—paleoseismic data, LiDAR surveys, GPS geodesy—that the pent-up strain has been migrating deep inland, looking for a new place to break.

That new route—bypassing the San Andreas Fault altogether—is the Walker Lane (and its southern continuation into the Mojave Desert, known as the Eastern California Shear Zone).

What this might mean—and one of the reasons I’m so fascinated by this idea—is that a new continental margin could be forming in the Eastern Sierra, near the California/Nevada state border, a future line of breakage between the Pacific and North American tectonic plates.

If this is true, the Pacific Ocean will someday flood north from the Gulf of California all the way past Reno—but, importantly, this will happen over the course of many millions of years (not due to one catastrophic earthquake). This means that no humans alive today—in fact, I would guess, no humans at all—will see the final result. If human civilization as we know it is roughly 15,000 years old, then civilization could rise and fall nearly 700 times before we even get to 10 million years, let alone 15 million or 20.

In any case, these recent big quakes out near Ridgecrest do not require that the most extreme Walker Lane scenario be true—that is, they do not require that the Walker Lane is an incipient continental margin. However, they do offer compelling and timely evidence that the Walker Lane region is, at the very least, more seismically active than its residents might want to believe.

I could go on at great length about all this, but, instead, I just want to point out one cool thing: the far northern route of the Walker Lane remains something of a mystery. If you’ve read the Wired piece, you’ll know that, for the Walker Lane to become a future continental edge, it must eventually rip back through California and southeastern Oregon to reach the sea. However, the route it might take—basically, from Pyramid Lake to the Pacific—is unclear, to say the least.

One place that came up several times while I was researching my Wired article was the northern California town of Susanville. Susanville is apparently a promising place for study, as geologists might find emergent faults there that could reveal the future path of the Walker Lane.

If you draw a straight line from the Reno/Pyramid Lake region through Susanville and keep going, you’ll soon hit a town called Fall River Mills. Interestingly, following the long aftershock sequence of these Ridgecrest quakes, there was a small quake in Fall River Mills this morning.

While seeing patterns in randomness—let alone drawing magical straight lines across the landscape—is the origin of conspiracy theory and the bane of serious scientific thinking, it is, nevertheless, interesting to note that the apparently linear nature of the Walker Lane could very well continue through Fall River Mills.

[Image: The Ridgecrest quakes and their aftershocks seem to support the idea of a linear connection along the Walker Lane; note that I have added a straight orange line in the bottom image, purely to indicate the very broad location of the Walker Lane].

While we’re on the subject, it is also interesting to see that, if you continue that same line just a little bit further, connecting Pyramid Lake to Susanville to Fall River Mills, you will hit Mt. Shasta, an active volcano in northern California. Again, if you’ve read the Wired piece, you’ll know that volcanoes seem to have played an interesting role in the early formation of the San Andreas Fault millions of years ago.

In any case, in cautious summary, I should emphasize that I am just an armchair enthusiast for the Walker Lane scenario, not a geologist; although I wrote a feature article about the Walker Lane, I am by no means an expert and it would be irresponsible of me to suggest anything here as scientific fact. It does interest me, though, that aftershocks appear to be illuminating a pretty dead-linear path northwest up the Walker Lane, including into regions where its future route are not yet clear.

Insofar as the locations of these aftershocks can be taken as scientifically relevant—not just a seismic coincidence—the next few weeks could perhaps offer some intriguing suggestions for the Walker Lane’s next steps.

After the Clouds

[Image: A cloudless day in the Alabama Hills of California; photo by BLDGBLOG].

The Earth could lose all its clouds according to a feasible runaway greenhouse scenario, modeled by scientists at Caltech.

“Clouds currently cover about two-thirds of the planet at any moment,” Natalie Wolchover writes for Quanta. “But computer simulations of clouds have begun to suggest that as the Earth warms, clouds become scarcer. With fewer white surfaces reflecting sunlight back to space, the Earth gets even warmer, leading to more cloud loss. This feedback loop causes warming to spiral out of control.”

Or, she warns, as if channeling J. G. Ballard’s novel The Drowned World, “think of crocodiles swimming in the Arctic.”

Anticipatory Libraries of Other Worlds

[Image: The mineral library, via ESA].

A team of “European planetary geologists and young scientists” is assembling a mineral library to help future astronauts identify rocks on other worlds. “The goal,” according to the European Space Agency, “is to create a database of all known rocks and minerals on the Moon, Mars and meteorites surfaces for easy identification.”

This collection, assembled in anticipation of discoveries made far from Earth, can then be used as a basis of forensic identification and formal comparison. We will know future worlds through anticipatory fragments we have collected here on Earth.

Although this particular “library” appears to be part of a specific training course, the ESA blog post about it links onward to what I believe is a separate institution, one called—incredibly—the Planetary Terrestrial Analogues Library.

There, the chemical spectra of rocks are analyzed to help understand “the mineralogical and geological evolution of terrestrial planets.” This, again, prepares humans and their robotic intermediaries to encounter landscapes so alien they cannot be understood at first glance, yet similar enough to our home world we can still work out what they’re made of.