World Store

There was an article last year in the New York Times about a California start-up called Inversion that wants to “speed delivery of important items by storing them in orbit.”

Their goal is to build “earth-orbiting capsules”—“hundreds or thousands of containers”—that could “deliver goods anywhere in the world from outer space.”

The company’s founders imagine the capsules could store artificial organs that are delivered to an operating room within a few hours or serve as mobile field hospitals floating in orbit that would be dispatched to remote areas of the planet.

Purely in terms of this logistical vision, I’m reminded of a DARPA proposal called the “Upward Falling Payloads” program. For that, critical goods, including weapons and war-fighting materiel—but, why not, perhaps also emergency organs for frontline surgery—could be stored underwater, in the middle of the ocean, using “deployable, unmanned, distributed systems that lie on the deep-ocean floor in special containers for years at a time. These deep-sea nodes would then be woken up remotely when needed and recalled to the surface. In other words, they ‘fall upward.’”

Whether or not either one of these plans is technically feasible is less interesting to me than the underlying idea of caching valuable objects in remote locations for later recovery. The world would become a series of hiding spots for artifacts and tools of potential future importance, the Earth reengineered for its archival utility.

Perhaps the Anthropocene is really just a world denuded of its ecological functions, all life other than human vacuously replaced by landscape-scale storage facilities housing just-in-time detritus—the psychosis of a species surrounded only by things it can store and retrieve at will.

Subterranean Lightning Brigade

[Image: “Riggers install a lightning rod” atop the Empire State Building “in preparation for an investigation into lightning by scientists of the General Electric Company” (1947), via the Library of Congress].

This is hardly news, but I wanted to post about the use of artificial lightning as a navigational aid for subterranean military operations.

This was reported at the time as a project whose goal was “to let troops navigate about inside huge underground enemy tunnel complexes by measuring energy pulses given off by lightning bolts,” where those lightning bolts could potentially be generated on-demand by aboveground tactical strike teams.

Such a system would replace the use of GPS—whose signals cannot penetrate into deep subterranean spaces—and it would operate by way of sferics, or radio atmospheric signals generated by electrical activity in the sky.

The proposed underground navigational system—known as “Sferics-Based Underground Geolocation” or S-BUG—would be capable of picking up these signals even from “hundreds of miles away. Receiving signals from lighting strikes in multiple directions, along with minimal information from a surface base station also at a distance, could allow operators to accurately pinpoint their position.” They could thus maneuver underground, even in hundreds—thousands—of feet below the earth’s surface in enemy caves or bunkers.

Hundreds of miles is a very wide range, of course—but what if there is no natural lightning in the area?

Enter artificial military storm generators, or the charge of the lightning brigade.

Back in 2009, DARPA also put out of a request for proposals as part of something called Project Nimbus. NIMBUS is “a fundamental science program focused on obtaining a comprehensive understanding of the lightning process.” However, it included a specific interest in developing machines for “triggering lightning”:

Experimental Set-up for Triggering Lightning: Bidders should fully describe how they would attempt to trigger lightning and list all potential pieces of equipment necessary to trigger lightning, as well as the equipment necessary to measure and characterize the processes governing lightning initiation, propagation, and attachment.

While it’s easy enough to wax conspiratorial here about future lightning weapons or militarized storm cells—after all, DARPA themselves write that they want to understand “how [lightning] ties into the global charging circuit,” as if “the global charging circuit” is something that could be instrumentalized or controlled—I actually find it more interesting to speculate that generating lightning would be not for offensive purposes at all, but for guiding underground navigation.

[Image: Lightning storm over Boston; via Wikimedia/NOAA].

Something akin to a strobe light begins pulsing atop a small camp of unmarked military vehicles parked far outside a desert city known for its insurgent activities. These flashes gradual lengthen, both temporally and physically, lasting longer and stretching upward into the sky; the clouds above are beginning to thicken, grumbling with quiet rolls of thunder.

Then the lightning strikes begin—but they’re unlike any natural lightning you’ve ever seen. They’re more like pops of static electricity—a pulsing halo or toroidal crown of light centered on the caravan of trucks below—and they seem carefully timed.

To defensive spotters watching them through binoculars in the city, it’s obvious what this means: there must be a team of soldiers underground somewhere, using artificial sferics to navigate. They must be pushing forward relentlessly through the sewers and smuggling tunnels, crawling around the roots of buildings and maneuvering through the mazework of infrastructure that constitutes the city’s underside, locating themselves by way of these rhythmic flashes of false lightning.

Of course, this equipment would eventually be de-militarized and handed down to the civilian sector, in which case you can imagine four friends leaving REI on a Friday afternoon after work with an artificial lightning generator split between them; no larger than a camp stove, it would eventually be set up with their other weekend caving equipment, used to help navigate through deep, stream-slick caves an hour and a half outside town, beneath tall mountains where GPS can’t always be trusted.

Or, perhaps fifty years from now, salvage teams are sent deep into the flooded cities of the eastern seaboard to look for and retrieve valuable industrial equipment. They install an artificial lightning unit on the salt-bleached roof of a crumbling Brooklyn warehouse before heading off in a small armada of marsh boats, looking for entrances to old maintenance facilities whose basement storage rooms might have survived rapid sea-level rise.

Disappearing down into these lost rooms—like explorers of Egyptian tombs—they are guided by bolts of artificial lightning that spark upward above the ruins, reflected by tides.

[Image: Lightning via NOAA].

Or—why not?—perhaps we’ll send a DARPA-funded lightning unit to one of the moons of Jupiter and let it flash and strobe there for as long as it needs. Called Project Miller-Urey, its aim is to catalyze life from the prebiotic, primordial soup of chemistry swirling around there in the Cthulhoid shadow of eternal ice mountains.

Millions and millions of years hence, proto-intelligent lifeforms emerge, never once guessing that they are, in fact, indirect descendants of artificial lightning technology. Their spark is not divine but military, the electrical equipment that sparked their ancestral line long since fallen into oblivion.

In any case, keep your eyes—and cameras—posted for artificial lightning strikes coming to a future military theater near you…

Greek Gods, Moles, and Robot Oceans

[Image: The Very Low Frequency antenna field at Cutler, Maine, a facility for communicating with at-sea submarine crews].

There have been about a million stories over the past few weeks that I’ve been dying to write about, but I’ll just have to clear through a bunch here in one go.

1) First up is a fascinating request for proposals from the Defense Advanced Research Projects Agency, or DARPA, who is looking to build a “Positioning System for Deep Ocean Navigation.” It has the handy acronym of POSYDON.

POSYDON will be “an undersea system that provides omnipresent, robust positioning” in the deep ocean either for crewed submarines or for autonomous seacraft. “DARPA envisions that the POSYDON program will distribute a small number of acoustic sources, analogous to GPS satellites, around an ocean basin,” but I imagine there is some room for creative maneuvering there.

The idea of an acoustic deep-sea positioning system that operates similar to GPS is pretty interesting to imagine, especially considering the strange transformations sound undergoes as it is transmitted through water. To establish accurately that a U.S. submarine has, in fact, heard an acoustic beacon and that its apparent distance from that point is not being distorted by intervening water temperature, ocean currents, or even the large-scale presence of marine life is obviously quite an extraordinary challenge.

As DARPA points out, without such a system in place, “undersea vehicles must regularly surface to receive GPS signals and fix their position, and this presents a risk of detection.” The ultimate goal, then, would be to launch ultra-longterm undersea missions, even establish permanently submerged robotic networks that have no need to breach the ocean’s surface. Cthulhoid, they will forever roam the deep.

[Image: An unmanned underwater vehicle; U.S. Navy photo by S. L. Standifird].

If you think you’ve got what it takes, click over to DARPA and sign up.

2) A while back, I downloaded a free academic copy of a fascinating book called Space-Time Reference Systems by Michael Soffel and Ralf Langhans.

Their book “presents an introduction to the problem of astronomical–geodetical space–time reference systems,” or radically offworld navigation reference points for when a craft is, in effect, well beyond any known or recognizable landmarks in space. Think of it as a kind of new longitude problem.

The book is filled with atomic clocks, quasars potentially repurposed as deep-space orientation beacons, the long-term shifting of “astronomical reference frames,” and page after page of complex math I make no claim to understand.

However, I mention this here because the POSYDON program is almost the becoming-cosmic of the ocean: that is, the depths of the sea reimagined as a vast and undifferentiated space within which mostly robotic craft will have to orient themselves on long missions. For a robotic submarine, the ocean is its universe.

3) The POSYDON program is just one part of a much larger militarization of the deep seas. Consider the fact that the U.S. Office of Naval Research is hoping to construct permanent “hubs” on the seafloor for recharging robot submarines.

These “hubs” would be “unmanned, underwater pods where robots can recharge undetected—and securely upload the intelligence they’ve gathered to Navy networks.” Hubs will be places where “unmanned underwater vehicles (UUVs) can dock, recharge, upload data and download new orders, and then be on their way.”

“You could keep this continuous swarm of UUVs [Unmanned Underwater Vehicles] wherever you wanted to put them… basically indefinitely, as long as you’re rotating (some) out periodically for mechanical issues,” a Naval war theorist explained to Breaking Defense.

The ultimate vision is a kind of planet-spanning robot constellation: “The era of lone-wolf submarines is giving away [sic] to underwater networks of manned subs, UUVs combined with seafloor infrastructure such as hidden missile launchers—all connected to each other and to the rest of the force on the surface of the water, in the air, in space, and on land.” This would include, for example, the “upward falling payloads” program described on BLDGBLOG a few years back.

Even better, from a military communications perspective, these hubs would also act as underwater relay points for broadcasting information through the water—or what we might call the ocean as telecommunications medium—something that currently relies on ultra-low frequency radio.

There is much more detail on this over at Breaking Defense.

4) Last summer, my wife and I took a quick trip up to Maine where we decided to follow a slight detour after hiking Mount Katahdin to drive by the huge antenna field at Cutler, a Naval communications station found way out on a tiny peninsula nearly on the border with Canada.

[Image: The antenna field at Cutler, Maine].

We talked to the security guard for a while about life out there on this little peninsula, but we were unable to get a tour of the actual facility, sadly. He mostly joked that the locals have a lot of conspiracy theories about what the towers are actually up to, including their potential health effects—which isn’t entirely surprising, to be honest, considering the massive amounts of energy used there and the frankly otherworldly profile these antennas have on the horizon—but you can find a lot of information about the facility online.

So what does this thing do? “The Navy’s very-low-frequency (VLF) station at Cutler, Maine, provides communication to the United States strategic submarine forces,” a January 1998 white paper called “Technical Report 1761” explains. It is basically an east coast version of the so-called Project Sanguine, a U.S. Navy program from the 1980s that “would have involved 41 percent of Wisconsin,” turning the Cheese State into a giant military antenna.

Cutler’s role in communicating with submarines may or may not have come to an end, making it more of a research facility today, but the idea that, even if this came to an end with the Cold War, isolated radio technicians on a foggy peninsula in Maine were up there broadcasting silent messages into the ocean that were meant to be heard only by U.S. submarine crews pinging around in the deepest canyons of the Atlantic is both poetic and eerie.

[Image: A diagram of the antennas, from the aforementioned January 1998 research paper].

The towers themselves are truly massive, and you can easily see them from nearby roads, if you happen to be anywhere near Cutler, Maine.

In any case, I mention all this because behemoth facilities such as these could be made altogether redundant by autonomous underwater communication hubs, such as those described by Breaking Defense.

5) “The robots are winning!” Daniel Mendelsohn wrote in The New York Review of Books earlier this month. The opening paragraphs of his essay are is awesome, and I wish I could just republish the whole thing:

We have been dreaming of robots since Homer. In Book 18 of the Iliad, Achilles’ mother, the nymph Thetis, wants to order a new suit of armor for her son, and so she pays a visit to the Olympian atelier of the blacksmith-god Hephaestus, whom she finds hard at work on a series of automata:

…He was crafting twenty tripods
to stand along the walls of his well-built manse,
affixing golden wheels to the bottom of each one
so they might wheel down on their own [automatoi] to the gods’ assembly
and then return to his house anon: an amazing sight to see.

These are not the only animate household objects to appear in the Homeric epics. In Book 5 of the Iliad we hear that the gates of Olympus swivel on their hinges of their own accord, automatai, to let gods in their chariots in or out, thus anticipating by nearly thirty centuries the automatic garage door. In Book 7 of the Odyssey, Odysseus finds himself the guest of a fabulously wealthy king whose palace includes such conveniences as gold and silver watchdogs, ever alert, never aging. To this class of lifelike but intellectually inert household helpers we might ascribe other automata in the classical tradition. In the Argonautica of Apollonius of Rhodes, a third-century-BC epic about Jason and the Argonauts, a bronze giant called Talos runs three times around the island of Crete each day, protecting Zeus’s beloved Europa: a primitive home alarm system.

Mendelsohn goes on to discuss “the fantasy of mindless, self-propelled helpers that relieve their masters of toil,” and it seems incredibly interesting to read it in the context of DARPA’s now even more aptly named POSYDON program and the permanent undersea hubs of the Office of Naval Research. Click over to The New York Review of Books for the whole thing.

6) If the oceanic is the new cosmic, then perhaps the terrestrial is the new oceanic.

The Independent reported last month that magnetically powered underground robot “moles”—effectively subterranean drones—could potentially be used to ferry objects around beneath the city. They are this generation’s pneumatic tubes.

The idea would be to use “a vast underground network of pipes in a bid to bypass the UK’s ever more congested roads.” The company’s name? What else but Mole Solutions, who refer to their own speculative infrastructure as a network of “freight pipelines.”

[Image: Courtesy of Mole Solutions].

Taking a page from the Office of Naval Research and DARPA, though, perhaps these subterranean robot constellations could be given “hubs” and terrestrial beacons with which to orient themselves; combine with the bizarre “self-burying robot” from 2013, and declare endless war on the surface of the world from below.

See more at the Independent.

7) Finally, in terms of this specific flurry of links, Denise Garcia looks at the future of robot warfare and the dangerous “secrecy of emerging weaponry” that can act without human intervention over at Foreign Affairs.

She suggests that “nuclear weapons and future lethal autonomous technologies will imperil humanity if governed poorly. They will doom civilization if they’re not governed at all.” On the other hand, as Daniel Mendelsohn points out, we have, in a sense, been dealing with the threat of a robot apocalypse since someone first came up with the myth of Hephaestus.

Garcia’s short essay covers a lot of ground previously seen in, for example, Peter Singer’s excellent book Wired For War; that’s not a reason to skip one for the other, of course, but to read both. See more at Foreign Affairs.

(Thanks to Peter Smith for suggesting we visit the antennas at Cutler).

Operation Deep Sleep: or, dormant robots at the bottom of the sea

[Image: An otherwise unrelated photo of lift bags being used in underwater archaeology; via NOAA].

The Defense Advanced Research Projects Agency, or DARPA, is hoping to implement a global infrastructure for storing mission-critical objects and payloads at the “bottom of the sea”—a kind of stationary, underwater FedEx that will release mission-critical packages for rendezvous with passing U.S. warships and UAVs.

It’s called the Upward Falling Payloads program.

The “concept,” according to DARPA, “centers on developing deployable, unmanned, distributed systems that lie on the deep-ocean floor in special containers for years at a time. These deep-sea nodes would then be woken up remotely when needed and recalled to the surface. In other words, they ‘fall upward.'” This requires innovative new technologies for “extended survival of nodes under extreme ocean pressure, communications to wake-up the nodes after years of sleep, and efficient launch of payloads to the surface.”

As Popular Science describes it, it’s a sleeping archive of “‘upward falling’ robots that can hide on the seafloor for years [and] launch on demand.”

And you can even get involved: DARPA is currently seeking proposals for how to realize its vision for Upward Falling Payloads.

DARPA seeks proposals in three key areas for developing the program: Communications, deep ocean ‘risers’ to contain the payloads, and the actual payloads. DARPA hopes to reach technical communities that conduct deep-ocean engineering from the telecom and oil-exploration industry to the scientific community with insights into signal propagation in the water and on the seafloor.

An informative “proposer’s day” will be held on January 25, 2013, where you can learn more about the program. It seems that, just a few years from now, storing objects for at-sea retrieval will be as ordinary as receiving an email.

Briefly, it seems worth mentioning that this vision of waking things up from slumber at the bottom of the sea reads like a subplot from Pacific Rim, or like some militarized remake of the works of H.P. Lovecraft—wherein Lovecraft’s fictional Cthulhu, a monstrous and alien god, is described (by Wikipedia) as “a huge aquatic creature sleeping for eternity at the bottom of the ocean and destined to emerge from his slumber in an apocalyptic age.”

Only, here, it is a gigantic system of military jewelry laced across the seafloor, locked in robotic sleep until the day of its electromagnetic reawakening.

(Thanks to Brian Romans for the link!)

Soft Robots

I’m fascinated by the so-called “chemical robots” program run by DARPA. Its purpose is to create “soft robots”: a “new class of soft, flexible, mesoscale mobile objects that can identify and maneuver through openings smaller than their dimensions and perform various tasks.”

[Image: Video originally seen over at IEEE Spectrum].

These soft machines, DARPA suggests, can be materially realized using “gel-solid phase transitions, electro- and magneto-rheological materials, geometric transitions, and reversible chemical and/or particle association and dissociation.” The idea of a robot that travels via “particle disassociation”—that is, a blurry cloud of “mesoscale mobile objects” that temporarily coalesces into a functioning machine before dissolving again—seems particularly astonishing.

Watch the above video for just one example of a “chemical robot.”

So what would these machines be used for? As DARPA explains: “During military operations it can be important to gain covert access to denied or hostile space. Unmanned platforms such as mechanical robots are of limited effectiveness if the only available points of entry are small openings.”

This is what I imagine Eyal Weizman‘s alter-ego might invent if he went into the robotics business in collaboration with eXistenZ-era David Cronenberg.

I’m specifically reminded of Weizman’s amazing paper, “Lethal Theory” (it is well worth reading the PDF), in which he writes of “microtactical actions” used by the Israeli military as a means of exploring a new domination of the city. The Israeli Defense Force, Weizman writes, has begun strategically retraining itself, in a bid to explore a “ghostlike military fantasy world of boundless fluidity, in which the space of the city becomes as navigable as an ocean.” Soldiers, we read, can now become “so ‘saturated’ within [a city’s] fabric that very few would have been visible from an aerial perspective at any given moment.”

Furthermore, soldiers used none of the streets, roads, alleys, or courtyards that constitute the syntax of the city, and none of the external doors, internal stairwells, and windows that constitute the order of buildings, but rather moved horizontally through party walls, and vertically through holes blasted in ceilings and floors.

This is referred to as “infestation.”

So what if you replaced the living human soldiers with swarms of “soft robots,” capable of squeezing themselves, roach-like, through even the smallest opening? As Weizman terrifyingly suggests later in the paper: “You will never even understand that which kills you.”

Or perhaps we could find a more civilian use, we might say, for these soft machines, and send tens of thousands of them—a storm of flexible swarm-organisms shifting their shapes and flocking—outfitted out with GPS and radar, into the earth, traveling downward via faultlines, where they can map the spheroidal puzzle of our planet.

(Thanks to Alex Trevi for the tip!)

The Subterranean Machine Dreams of a Paralyzed Youth in Los Angeles

[Image: A glimpse of Honda’s brain-interface technology, otherwise unrelated to the post below].

Among many other interesting things in the highly recommended Wired for War: The Robotics Revolution and Conflict in the Twenty-First Century by P.W. Singer – a book of interest to historians, psychologists, designers, military planners, insurgents, peace advocates, AI researchers, filmmakers, novelists, future soldiers, legislators, and even theologians – is a very brief comment about military research into the treatment of paralysis.
In a short subsection called “All Jacked Up,” Singer refers to “a young man from South Weymouth, Massachusetts,” who was “paralyzed from the neck down in 2001.” After nearly giving up hope for recovery, “a computer chip was implanted into his head.”

The goal was to isolate the signals leaving [his] brain whenever he thought about moving his arms or legs, even if the pathways to those limbs were now broken. The hope was that [his] intent to move could be enough; his brain’s signals could be captured and translated into a computer’s software code.

None of this seemed like news to me; in fact, even the next step wasn’t particularly surprising: they hooked him up to a computer mouse and then to a TV remote control, and the wounded man was thus able not only to surf the web but to watch HBO.
What I literally can’t stop thinking about, though, was where this research “opens up some wild new possibilities for war,” as Singer writes.
In other words: why hook this guy up to a remote control television when you could hook him up to a fully-armed drone aircraft flying above Afghanistan? He would simply pilot the plane with his thoughts.

[Image: A squadron of drones awaits its orders].

This vision – of paralyzed soldiers thinking unmanned planes through war – is both terrible and stunning.
Singer goes on to describe DARPA‘s “Brain-Interface Project,” which helped pay for this research, in which training the paralyzed to control machines by thought could be put to use for military purposes.
Later, Singer describes research into advanced, often robotic prostheses; “these devices are also being wired directly into the patient’s nerves,” he writes.

This allows the solder to control their artificial limbs via thought as well as have signals wired back into their peripheral nervous system. Their limbs might be robotic, but they can “feel” a temperature change or vibration.

When this is put into the context of the rest of Singer’s book – where we read, for instance, that “at least 45 percent of [the U.S. Air Force’s] future large bomber fleet [will be] able to operate without humans aboard,” with other “long-endurance” military drones soon “able to stay aloft for as long as five years,” and if you consider that, as Singer writes, the Los Angeles Police Department “is already planning to use drones that would circle over certain high-crime neighborhoods, recording all that happens” – you get into some very heady terrain, indeed. After all, the idea that those drone aircraft circling over Los Angeles in the year 2013 are actually someone’s else literal daydream simply blows me away.
In other words, if you can directly link the brain of a paralyzed soldier to a computer mouse – and then to a drone aircraft, and then perhaps to an entire fleet of armed drones circling over enemy territory – then surely you could also hook that brain up to, say, lawnmowers, remote-controlled tunneling machines, lunar landing modules, strip-mining equipment, and even 3D printers.
And here’s where some incredible landscape design possibilities come in.

[Image: 3D printing, via Thinglab].

A patient somewhere in Gloucestershire dreams in plastic objects endlessly extruded from a 3D printer… Architectural models, machine parts, abstract sculpture – a whole new species of object is emitted, as if printing dreams in three-dimensions.
Or you go to a toy store in Manhattan – or to next year’s Design Indaba, or to the Salone del Mobile – and you find nothing but rooms full of strange objects dreamed into existence by paralyzed 16-year olds.
The idea of brain-controlled wireless digging machines, in particular, just astonishes me; at night you dream of tunnels – because you are actually in control of tunneling equipment operating somewhere beneath the surface of the earth.
A South African platinum mine begins to diverge wildly from real sites of mineral wealth, its excavations more and more abstract as time goes on – carving M.C. Escher-like knots and strange cursive whorls through ancient reefwork below ground – and it’s because the mining engineer, paralyzed in a car crash ten years ago and in control of the digging machines ever since, has become addicted to morphine.
Or perhaps this could even be used as a new and extremely avant-garde form of psychotherapy.
For instance, a billionaire in Los Angeles hooks his depressed teenage son up to Herrenknecht tunneling equipment which has been shipped, at fantastic expense, down to Antarctica. An unmappably complex labyrinth of subterranean voids is soon created; the boy literally acts out through tunnels. If rock is his paint, he is its Basquiat.
Instead of performing more traditional forms of Freudian analysis by interviewing the boy in person, a team of highly-specialized dream researchers is instead sent down into those artificial caverns, wearing North Face jackets and thick gloves, where they deduce human psychology from moments of curvature and angle of descent.
My dreams were a series of tunnels through Antarctica, the boy’s future headstone reads.

[Image: Three varieties of underground mining machine].

That, or we stay aboveground and we look at the design implications of brain-interfaced gardening equipment.
I’m imagining a new film directed by Alex Trevi, in which a landscape critic on commission from The New Yorker visits a sprawling estate house somewhere in southern France. The owner has been bed-bound for three decades now, following a near-fatal car accident, but his brain was recently interfaced directly with an armada of wireless gardening machines: constantly trimming, mowing, replanting, and pruning, the gardens outside are shifted with his every thought process.
Having arrived simply to write a thesis about this unique development in landscape design, our critic finds herself entranced by the hallucinatory goings-on, the creeping vines and insectile machines and moving walls of hedges all around her.

[Image: The gardens at Versailles, via Wikipedia].

Returning to Singer, briefly, he writes that “Many robots are actually just vehicles that have been converted into unmanned systems” – so if we can robotize aircraft, digging machines, riding lawnmowers, and even heavy construction equipment, and if we can also directly interface the human brain to the controls of these now wireless robotic mechanisms, then the design possibilities seem limitless, surreal, and well worth exploring (albeit somewhat cautiously) in real life.
It could be a new episode of MythBusters, or the next iteration of the DARPA Grand Challenge. What’s the challenge?
A paralyzed teenager has to dig a tunnel through the Alps using only his or her brain and a partial face excavation machine.