The Reaction Area

Enigmatic chemical reactions” have broken out underground inside two Los Angeles-area landfills, according to the L.A. Times. These “highly unusual reactions at Los Angeles County’s two largest landfills have raised serious questions about the region’s long-standing approach to waste disposal and its aging dumps.”

If landfills are the extreme endpoint of a cultural practice of burial—we bury to memorialize, to forget, to protect, to hide, store, and retrieve—then the idea that what we’ve made subterranean might take on a life or chemical activity of its own has a strange irony. Landfills seem to fully embody the idea that we don’t understand the extent of we’ve placed into the ground, nor what it does once we leave it there. Perhaps we also bury to reinvigorate and transform.

I’m reminded of a story from the British nuclear facility at Sellafield, whose new owners realized they had incomplete documentation of the site and thus had no idea where radioactive waste had been buried there. They actually put an ad in the local newspaper saying, “We need your help. Did you work at Sellafield in the 1960s, 1970s or 1980s? Were you by chance in the job of disposing of radioactive material? If so, the owners of Britain’s nuclear waste dump would very much like to hear from you: they want you to tell them what you dumped—and where you put it.”

It feels oddly on-brand with modern living that we might not fully understand long-term landfill chemistry, that random solvents, dyes, acids, fuels, and detergents sloshing around together in huge, sealed landscapes for decades might break out in unexplained reactions, like inadvertent batteries—that we isolated our waste, thinking it would make us safe, but it is only gaining in chemical power.

As of November 2023, the “reaction area” in one of the L.A. dumps “had grown by 30 to 35 acres, according to the agency [CalRecycle]. Already, the heat has melted or deformed the landfill’s gas collection system, which consists mostly of polyvinyl chloride well casings. The damage has hindered the facility’s efforts to collect toxic pollutants.” This seems to imply it will get worse, and nearby residents have begun reporting chemical smells.

“The bad news,” L.A. County Supervisor Kathryn Barger told the paper, “is we’ve never seen anything like this, and if we don’t understand what triggered it, it could happen at other landfills that are dormant. So it’s important for us to get a handle on it.” The earth, riddled with dormant landfills, attaining enigmatic chemical vigor in the darkness.

(Related: Class Action, Land of Fires, and The Landscape Architecture of Crisis.)

Potsdamer Sea

[Image: From Kiessling’s Grosser Verkehrs-Plan von Berlin (1920).]

It’s funny to be back in Berlin, a city where I once thought I’d spend the rest of my life, first arriving here as a backpacker in 1998 and temporarily moving in with a woman 14 years older than me, who practiced Kabbalah and had twin dogs and who, when seeing that I had bought myself a portable typewriter because I was going through a William Burroughs phase, blessed it one night in her apartment near the synagogue in a ceremony with some sort of bronze sword. It’s almost literally unbelievable how long ago that was. More years have passed since I spent time in Berlin—supposedly to study German for grad school, but in reality organized entirely around going to Tresor—than I had been alive at the time.

Because I’m here again on a reporting trip, I was speaking yesterday evening with a former geophysicist who, when the Berlin Wall came down, found work doing site-remediation studies and heritage-mapping projects on land beneath the old path of the Wall. He was tasked with looking for environmental damage and unexploded ordnance, but also for older foundations and lost buildings, earlier versions of Berlin that might pose a structural threat to the city’s future or that needed to be recorded for cultural posterity.

Ironically, in a phase of my life I rarely think about, I wrote my graduate thesis on almost exactly this topic, focused specifically on Potsdamer Platz—once divided by the Wall—and the role of architectural drawings in communicating historical context. When I was first here, in 1998 into early 1999, Potsdamer Platz was still a titanic hole in the ground, an abyss flooded with groundwater, melted snow, and rain, a kind of maelström you could walk over on pedestrian bridges, where engineering firms were busy stabilizing the earth for what would become today’s corporate office parks.

As I told the former geophysicist last night, I remember hearing at the time that there were people down there, SCUBA diving in the floodwaters, performing geotechnical studies or welding rebar or looking for WWII bombs, I had no idea, but, whatever it was, their very existence took on an outsized imaginative role in my experience of the city. Berlin, destroyed by war, divided by architecture, where people SCUBA dive through an artificial sea at its broken center. It felt like a mandala, a cosmic diagram, with this inverted Mt. Meru at its heart, not an infinite mountain but a bottomless pit.

What was so interesting to me about Berlin at the time was that it felt like a triple-exposure photograph, the city’s future overlaid atop everything else in a Piranesian haze of unbuilt architecture, whole neighborhoods yet to be constructed, everything still possible, out of focus somehow. It was incoherent in an exhilaratingly literal sense. In Potsdamer Platz, what you thought was the surface of the Earth was actually a bridge; you were not standing on the Earth at all, or at least not on earth. It was the Anthropocene in miniature, a kind of masquerade, architecture pretending to be geology.

The more that was built, however, the more Berlin seemed to lose this inchoate appeal. The only people with the power to control the rebuilding process seemed to be automobile consortiums and international hotel groups, office-strategy consultants not wizards and ghosts or backpacking writers. Perhaps the city still feels like that to other people now—unfinished, splintered, jagged in a temporal sense, excitingly so, a city with its future still taking shape in the waves of an underground sea—but it seems to me that Berlin’s blur has been misfocused.

In any case, with the caveat that I am in Berlin this week for a very specific research project, so many people I’ve met have pointed to the fall of the Wall as an explosive moment for geophysical surveys in the East. Engineers were hired by the dozen to map, scan, and survey damaged ground left behind by a collapsed imperialist Empire, and the residues of history, its chemical spills and lost foundations, its military bunkers and archaeological remains, needed to be recorded. The ground itself was a subject of study, an historical medium. On top of that, new freeways were being built and expanded, heading east into Poland—and this, too, required geophysical surveys. The future of the region was, briefly, accessible only after looking down. The gateway to the future was terrestrial, a question of gravel and sand, forgotten basements and fallen walls.

The SCUBA divers of the Potsdamer Sea now feel like mascots of that time, dream figures submerged in the waves of a future their work enabled, swimming through historical murk with limited visibility and, air tanks draining, limited time. Their pit was soon filled, the hole annihilated, and the surface of the Earth—which was actually architecture—returned with amnesia.

Underground Cathedrals of Radiation and Zones of Irreversible Strain

[Image: Nevada test site, Google Maps, filtered through Instagram.]

There’s a great line in Tom Zoellner’s book Uranium: War, Energy, and the Rock That Shaped the World where he describes the after-effects of underground nuclear tests. Zoellner writes that, during these tests, “a nuclear bomb buried in a deep shaft underneath a mountain would vaporize the surrounding rock and make a huge cathedral-like space inside the earth, ablaze with radioactivity.”

I thought of Zoellner’s vision of a “huge cathedral-like space inside the earth” recently while reading a paper by Colin N. Waters et al., called “Recognising anthropogenic modification of the subsurface in the geological record.” Among other things, the authors describe the long-term “structural effects of subsurface weapon detonations.”

[Image: Nevada test site, Google Maps, filtered through Instagram.]

They suggest that these detonations produce spaces—such as collapse cones and debris fields—that have “no direct natural analogue,” although they do helpfully contrast weapon-test craters with meteor-impact sites. (The authors also break underground nuclear test sites down into “zones,” which include a “zone of irreversible strain,” which is an amazing phrase.)

The larger purpose of their paper, though, is to look at long-term “signatures” that humans might leave behind in our underground activity, from nuclear tests to mineralogical carbon-capture to deep boreholes to coal mines. Will these signatures still be legible or detectible for humans of the far future? On the whole, their conclusion is not optimistic, suggesting instead that even vast subterranean mines and sites of underground nuclear weapons tests will fade from the terrestrial archive.

“Many of the physical and chemical products of human subsurface intrusion either do not extend far from the source of intrusion, lack long-term persistence as a signal or are not sufficiently distinctive from the products of natural processes to make them uniquely recognisable as of anthropogenic origin,” they write. “But the scope and complexity of the signals have increased greatly over recent decades, both in areal extent and with increasing depths, and seem set to be a fundamental component of our technological expansion. There will be some clues to the geologist of the far-future, when historical knowledge records may not be preserved, that will help resolve the origin.”

[Image: Nevada test site craters, courtesy of the National Nuclear Security Administration Nevada Site Office Photo Library.]

Nevertheless, it is totally fascinating to imagine what future archaeologists might make of Zoellner’s “huge cathedral-like space[s] inside the earth, ablaze with radioactivity,” long after they’ve collapsed, and where sand has been fused into unnatural glass and anomalous traces of radiation can still be found with no reasonable explanation for how they got there.

Could future archaeologists deduce the existence of nuclear weapons from such a landscape? And, if so, would such a suggestion—ancient weapons modeled on the physics of stars—sound rational or vaguely insane?

(Vaguely related: “fossil reactors” underground in Gabon.)

Fungal Lightning

[Image: The mushroom tunnel of Mittagong, photo by Nicola Twilley, via BLDGBLOG.]

“Japanese researchers are closing in on understanding why electrical storms have a positive influence on the growth of some fungi,” Physics World reported last month, with some interesting implications for agriculture.

These electrical storms do not have to be nearby, and they do not even need to be natural: “In a series of experiments, Koichi Takaki at Iwate University and colleagues showed that artificial lightning strikes do not have to directly strike shiitake mushroom cultivation beds to promote growth.” Instead, it seems one can coax mushrooms into fruiting using even just the indirect presence of electrical fields.

As the article explains, “atmospheric electricity has long been known to boost the growth of living things, including plants, insects and rats,” but mushrooms appear to respond even to regional electrical phenomena—for example, when a distant lightning storm rolls by. “In Takaki’s previous studies, yield increases were achieved by running a direct current through a shiitake mushroom log. But Takaki still wondered—why do natural electric storms indirectly influenced [sic] the growth of mushrooms located miles away from the lightning strikes?”

Whether or not power lines or electricity-generation facilities, such as power plants, might also affect—or even catalyze—mushroom growth is not clear.

For now, Takaki is hoping to develop some kind of electrical-stimulation technique for mushroom growth, with an eye on the global food market.

[Image: Nikola Tesla, perhaps daydreaming of mushrooms; courtesy Wellcome Library.]

It is quite astonishing to imagine that, someday, those mushrooms you’re eating in a gourmet pasta dish were grown inside some sort of wild, Nikola Tesla-like electrical cage, half X-Men, half food-technology of the near-future—underground shining domes of fungal power.

[Image: The mushroom tunnel of Mittagong, photo by Nicola Twilley, via BLDGBLOG.]

The opening image of this post, meanwhile, is from a surreal field trip I took back in 2009 with Nicola Twilley to visit the “mushroom tunnel of Mittagong,” a disused rail tunnel in southeast Australia that is—or, as of 2009, was—used as a subterranean mushroom-growth facility. Imagine this tunnel quietly pulsing with electricity in the darkness, humid, strobing, its wet logs fruiting with directed fungi.

Electrical mushroom-control techniques, or where the future of food production merges imperceptibly with the world of H.P. Lovecraft.

[Image: The mushroom tunnel of Mittagong, photo by Nicola Twilley, via BLDGBLOG.]

Read a bit more over at Physics World.

The Deep

[Image: Binnewater Kilns, photo by BLDGBLOG.]

While I was over in New York State last fall, reporting both the “witch houses” piece for The New Yorker and the Middletown High School piece for The Guardian, I stopped off in the town of Rosendale, enticed there by several things I noticed on Google Maps.

[Image: The Rosendale Trestle, photo by BLDGBLOG.]

First was what turned out to be a satirical reference to something called the Geo Refrigeration Crevice, which, even on its own, sounded worth a side-trip. But, in the exact same area, there were also photos of an incredible-looking railway bridge converted to a hiking path that I wanted to walk across; there were these gorgeous, ruined kilns built into the hillside; and there were supposedly huge caves.

How on Earth could I drive past all that without stopping?

[Image: Caves everywhere! Photos by BLDGBLOG.]

Being—perhaps to my Instagram followers’ frustration—an avid hiker, I spent far more time there than I should have, mostly looking down into jagged crevasses that extended past the roots of trees, carpeted in fallen leaves, often hidden beneath great, shipwrecked jumbles of boulders slick with the waters of temporary streams.

I crossed the bridge and was ready to hit the road again, when I saw another site of interest on the map. I decided to walk all the way down and around to something called the Widow Jane Mine.

Having visited many mines in my life, I was expecting something like a small arched hole in the side of a hill, probably guarded with a locked gate. Instead, hiking into the woods past some sort of private home/closed mining museum, the ground still damp from rain, I found myself stunned by the unexpected appearance of these huge, moaning, jaw-like holes blasted into the Earth.

[Image: An entrance to the Widow Jane Mine; photo by BLDGBLOG.]

I walked inside and immediately saw the space was huge: a massive artificial cavern extending far back into the hillside. Excuse my terribly lit iPhone photos here, but these images should give you at least a cursory sense of the mine’s scale.

[Image: Inside the Widow Jane Mine; photos by BLDGBLOG.]

Several things gradually became clear as my eyes adjusted to the darkness.

One, I was totally alone in there and had no artificial illumination beyond my phone, whose light was useless. Two, a great deal of the mine was flooded, meaning that the true extent of its subterranean workings was impossible to gauge; I began fantasizing about returning someday with a canoe and seeing how far back it all really goes.

[Image: Flooding inside the Widow Jane Mine; photo by BLDGBLOG.]

Three, there were plastic lawn chairs everywhere. And they were facing the water.

While the actual explanation for this would later turn out to be both entirely sensible and somewhat anticlimactic—the mine, it turns out, is occasionally used as a performance venue for unusual concerts and events—it was impossible not to fall into a more Lovecraftian fantasy, of people coming here to sit together in the darkness, waiting patiently for something to emerge from the smooth black waters of a flooded mine, perhaps something they themselves have invited to the surface…

[Image: Lawn chairs facing the black waters of a flooded mine; photo by BLDGBLOG.]

In any case, at that point I couldn’t be stopped. While trying to figure out where in the world I had left my rental car, I noticed something else in Google’s satellite view of the area—some sort of abandoned factory complex in the woods—so I headed out to find it.

On the way there, still totally alone and not hiking past a single other person, there was some sort of Blair Witch house set back in the trees, collapsing under vegetation and water damage, with black yawning windows and graffiti everywhere. I believe it is this structure in the satellite pic.

[Image: A creepy, ruined house in the woods, photo by BLDGBLOG.]

Onward I continued, walking till I made it, finally, to this sprawling cement plant facility of some sort just standing there in a clearing.

[Image: Cement world; photos by BLDGBLOG.]

I wandered into the silos, looking at other people’s graffiti…

[Image: “Born to Die”—it’s hard to argue with that, although when I texted this photo to a friend he thought it said “Born to Pie,” which I suppose is even better. Photo by BLDGBLOG.]

…before continuing on again to find my car.

Then, though, one more crazy thing popped up, sort of hidden behind those kilns in the opening photo of this post.

There was a door in the middle of the forest! With a surveillance camera!

[Image: Photos by BLDGBLOG.]

It turns out this door leads down into the massive document-storage caverns of Iron Mountain located nearby, a company whose subterranean archive fever was documented in The New Yorker several years ago (albeit referring to a slightly different location of the firm). I would guess that this is the approximate location of that door.

This was confirmed for me by a man sitting alone in a public works truck back at the Binnewater Kilns parking lot, near my rental car. He was smoking a cigar and listening to the radio with his window rolled down when I walked up to the side of his truck and said, “Hey, man, what’s that door in the woods?”

Void Shaft Electricity

[Image: An engraving of mining, from Diderot’s Encyclopedia.]

A Scottish firm called Gravitricity wants to turn abandoned mine shafts into gravity-driven, underground electrical batteries. Power could be generated and stored, the Guardian reported back in late 2019, “by hoisting and dropping 12,000-ton weights—half the weight of the Statue of Liberty—down disused mine shafts.”

By timing these drops with regional energy demand, Gravitricity’s repurposed mines could act as “breakthrough underground energy-storage systems,” a company spokesperson explains in a video hosted on their site.

“Gravitricity said its system effectively stores energy by using electric winches to hoist the weights to the top of the shaft when there is plenty of renewable energy available, then dropping the weights hundreds of meters down vertical shafts to generate electricity when needed,” the Guardian continues.

[Image: From the Gravitricity website.]

In Subterranea: The Magazine for Subterranea Britannica, where I initially read about this plan, some of the proposal’s inherent design limitations are made clear. “What would be required for the Gravitricity scheme,” SubBrit suggests, “would be very deep, wide, and perhaps brick-lined shafts clear of ladderways, air ducts, cables and the like. On what sort of surface the weights might land, time and time again, is another consideration.”

Of course, this suggests that such shafts could also be deliberately designed and excavated as purpose-built battery-voids stretching down hundreds—thousands—of meters into the Earth, a not-impossible architectural undertaking. Repurposed domestic wells, using smaller weights, could also potentially work for single-home electrical generation, etc. etc.

So here’s to a new generation of proposals for how to perfect such a scheme, proposals that should be awarded bonus points if the resulting gigantic underground cylinders might also function as seismic invisibility cloaks (or “huge arrays of precisely drilled holes and trenches in the ground”).

Dark Matter Mineralogy and Future Computers of Induced Crystal Flaws

[Image: Mexico’s “Cave of the Crystals,” via Wikipedia].

I guess I’ve got minerals on the brain.

Anyway, there was an amazing story last week suggesting that, deep inside the planet, minerals might exhibit flaws associated with “collisions with dark matter.” In a sense, this would make the entire interior of the earth a de facto dark matter detector—or, according to researchers at the University of Michigan, “minerals such as halite (sodium chloride) and zabuyelite (lithium carbonate), can act as ready-made detectors.”

Proving this hypothesis sounds like the opening scene of a blockbuster science fiction film: “An experiment could extract the minerals—which can be around 500 million years old—from kilometres-deep boreholes that already exist for geological research and oil prospecting. Physicists would need to crack open the extracted minerals and scan the exposed surfaces under an electron or atomic force microscope for the tracks made by recoiling nuclei. They could also use X-ray or ultraviolet 3D scanners to study bigger chunks of minerals faster, but with lower resolution.”

Either way, it’s incredible to imagine that slightly altered mineral structures deep inside the planet might reveal the presence of dark matter washing through the cosmos. After all, the Earth is allegedly “constantly crashing through huge walls of dark matter,” so the idea that some rocks might be glitched and scratched by these impacts isn’t that hard to believe. In fact, this brings to mind another hypothesis, that the GPS satellite network is, in fact, a huge, accidental dark matter detector.

Read more at Nature.

Meanwhile, ScienceDaily reported earlier this month that flaws deliberately introduced into the crystal forms of diamonds could be structured such that they improve those diamonds’ capacity for quantum computation. Apparently, a team at Princeton has designed new kinds of diamonds “that contain defects capable of storing and transmitting quantum information for use in a future ‘quantum internet.’”

There is obviously no connection between these two stories, but that won’t stop me from imagining some vast new quantum computer network, coextensive with the Earth’s interior, performing prime-number calculations along dark matter-induced crystal flaws, crooked mineral veins flashing in the darkness with data, like some buried circuitboard throbbing beneath the continents and seas.

Read more at ScienceDaily.

(Related: Planet Harddrive.)

Secret British Caving Teams and the Mineralogy of Nuclear War

[Image: An otherwise unrelated photo of a cave in China, taken by @PhailMachine, via wallhere].

An interesting story that re-emerged during recent coverage of the Thai cave rescue is that a team of British cavers trapped underground in central Mexico for “more than a week” back in 2004 had been accused of having an ulterior motive.

Of the six men, five were British soldiers, and the crew was rescued not by local emergency crews but by a team flown in from Britain. Nothing about either alleged fact is even remotely suspicious, of course, but, according to local press at the time, “the men had been looking for materials that could be used to make nuclear weapons.”

This was apparently more than just a bar-room rumor: Mexico’s energy minister “waded into the row by saying he would send members of the country’s nuclear research institute into the caves because of rumours the British potholers were looking for uranium deposits.” Things “descended into farce,” according to the Guardian, “amid claims the MoD-sponsored expedition was a secret uranium prospecting exercise and that precise details of the trip were not forwarded to the relevant authorities.”

The conspiracy seems to have begun when someone noticed a particular piece of equipment in a photo of the caving team: “someone spotted radon dosimeters being used. This wasn’t a military training exercise; it was a bunch of guys on holiday, some of whom happened to be in the armed services.”

What the British team would even have done with such materials, if they had found them, including how they would have safely transported uranium out of the underworld in their caving gear—not to mention how they would have exploited this knowledge later, perhaps by developing a vast, illegal, underground mine in the middle of central Mexico?—is difficult to imagine, but, wow, would I like to read that novella.

Six British soldiers descend into the Earth beneath Mexico looking for the infernal materials of war, part of a much larger, secret global mission for subterranean weapons-prospecting, slipping into caves in Central America, the U.S. Southwest, the Namibian desert, and beyond, combining raw international espionage, classified satellite reports, weaponized mineralogy, advanced underground mapping techniques, and every gear-head’s camping equipment fantasy turned up to 11.

La vie minérale

[Image: Photo by Virginie Laganière and Jean-Maxime Dufresne].

A new exhibition featuring photos, videos, and sound installations by Virginie Laganière and Jean-Maxime Dufresne looks at life underground in Helsinki, Finland.

“Imagine a city with more than 400 underground facilities, tunnels that span over hundreds of kilometres and 10 million cubic meters of space carved into old Precambrian bedrock,” they write. These spaces serve as “athletic training sites, energy distribution networks, globalized data centers, archival chambers, a buried church or undisclosed military facilities,” to name only a few of their everyday uses.

The exhibition is up until June 17th, in Québec City. Read more at l’Œil de Poisson.

The Surface of a Terrestrial Sea

[Image: A sinkhole in Wink, Texas, surrounded by oil extraction and wastewater injection infrastructure].

A story I meant to include in my link round-up yesterday is this news item about a “large swath” of active oil well sites in Texas “heaving and sinking at alarming rates.”

In other words, previously solid ground has been turned into a slow-moving terrestrial sea.

“Radar satellite images show significant movement of the ground across a 4000-square-mile area—in one place as much as 40 inches over the past two-and-a-half years,” Phys.org reports. The land is tidal, surging and rolling with artificially induced deformation.

“This region of Texas has been punctured like a pin cushion with oil wells and injection wells since the 1940s and our findings associate that activity with ground movement,” one of the researchers explains.

[Image: Infrastructure near Wink, Texas].

What’s particularly fascinating about this is why it’s alleged to be happening in the first place: a jumbled, chaotic, quasi-architectural mess of boreholes, abandoned pipework, and other artificial pores has begun churning beneath the surface of things and causing slow-motion land collapse.

For example, “The rapid sinking is most likely caused by water leaking through abandoned wells into the Salado formation and dissolving salt layers, threatening possible ground collapse.” Or a nearby region “where significant subsidence from fresh water flowing through cracked well casings, corroded steel pipes and unplugged abandoned wells has been widely reported.”

This utterly weird, anthropocenic assemblage—or should I say anthroposcenic—has also changed the terrain in other ways. Water leaking into an underground salt formation has “created voids,” for example, which have “caused the ground to sink and water to rise from the subsurface, including creating Boehmer Lake, which didn’t exist before 2003.” It’s like upward-falling rain.

The site brings to mind the work of Lebbeus Woods: jammed-up subterranean infrastructure, in a sprawling knot of abandoned and semi-functional machinery, causing the solid earth to behave more like the sea.

Read more at Phys.org.

Seismic Potential Energy

[Image: Photo by BLDGBLOG].

I got to hike with my friend Wayne last week through a place called the Devil’s Punchbowl, initially by way of a trail out and back from a very Caspar David Friedrich-ian overlook called the Devil’s Chair.

[Image: Wayne, Rückenfigur; photo by BLDGBLOG].

The Punchbowl more or less lies astride the San Andreas Fault, and the Devil’s Chair, in particular, surveils this violently serrated landscape, like gazing out across exposed rows of jagged teeth—terra dentata—or perhaps the angled waves of a frozen Hokusai painting. The entire place seems charged with the seismic potential energy of an impending earthquake.

[Image: It is difficult to get a sense of scale from this image, but this geological feature alone is at least 100 feet in height, and it is only one of hundreds; photo by BLDGBLOG].

The rocks themselves are enormous, splintered and looming sometimes hundreds of feet over your head, and in the heat-haze they almost seem buoyant, subtly bobbing up and down with your footsteps like the tips of drifting icebergs.

[Image: Looking out at the Devil’s Chair; photo by BLDGBLOG].

In fact, we spent the better part of an hour wondering aloud how geologists could someday cause massive underground rock formations such as these to rise to the surface of the Earth, like shipwrecks pulled from the bottom of the sea. Rather than go to the minerals, in other words, geologists could simply bring the minerals to them.

[Image: Photo by BLDGBLOG].

Because of the angles of the rocks, however, it’s remarkably easy to hike out amidst them, into open, valley-like groins that have been produced by tens of thousands of years’ worth of rainfall and erosion; once there, you can just scramble up the sides, skirting past serpentine pores and small caves that seem like perfect resting spaces for snakes, till you reach sheer drop-offs at the top.

There, views open up of more and more—and more—of these same tilted rocks, leading on along the fault, marking the dividing line between continental plates and tempting even the most exhausted hiker further into the landscape. The problem with these sorts of cresting views is that they become addictive.

[Image: Wayne, panoramically doubled; photo by BLDGBLOG].

At the end of the day, we swung by the monastic community at St. Andrew’s Abbey, which is located essentially in the middle of the San Andreas Fault. Those of you who have read David Ulin’s book The Myth of Solid Ground will recall the strange relationship Ulin explores connecting superstition, faith, folk science, and popular seismology amongst people living in an earthquake zone.

Even more specifically, you might recall a man Ulin mentions who once claimed that, hidden “in the pattern of the L.A freeway system, there is an apparition of a dove whose presence serves to restrain ‘the forces of the San Andreas fault’.”

This is scientifically cringeworthy, to be sure, but it is nonetheless interesting in revealing how contemporary infrastructure can become wrapped up in emergent mythologies of how the world (supposedly) works.

The idea, then, of a rogue seismic abbey quietly established in a remote mountainous region of California “to restrain ‘the forces of the San Andreas Fault’”—which, to be clear, is not the professed purpose of St. Andrew’s Abbey—is an idea worth exploring in more detail, in another medium. Imagine monks, praying every night to keep the rocks below them still, titanic geological forces lulled into a state of quiescent slumber.

[Image: Vasquez Rocks at sunset; photo by BLDGBLOG].

In fact, I lied: at the actual end of the day, Wayne and I split up and I drove back to Los Angeles alone by way of a sunset hike at Vasquez Rocks, a place familiar to Star Trek fans, where rock formations nearly identical to—but also less impressive than—the Devil’s Punchbowl breach the surface of the Earth like dorsal fins. The views, as you’d expect, were spectacular.

Both parks—not to mention St. Andrew’s Abbey—are within easy driving distance of Los Angeles, and both are worth a visit.