The Surface of a Terrestrial Sea

[Image: A sinkhole in Wink, Texas, surrounded by oil extraction and wastewater injection infrastructure].

A story I meant to include in my link round-up yesterday is this news item about a “large swath” of active oil well sites in Texas “heaving and sinking at alarming rates.”

In other words, previously solid ground has been turned into a slow-moving terrestrial sea.

“Radar satellite images show significant movement of the ground across a 4000-square-mile area—in one place as much as 40 inches over the past two-and-a-half years,” Phys.org reports. The land is tidal, surging and rolling with artificially induced deformation.

“This region of Texas has been punctured like a pin cushion with oil wells and injection wells since the 1940s and our findings associate that activity with ground movement,” one of the researchers explains.

[Image: Infrastructure near Wink, Texas].

What’s particularly fascinating about this is why it’s alleged to be happening in the first place: a jumbled, chaotic, quasi-architectural mess of boreholes, abandoned pipework, and other artificial pores has begun churning beneath the surface of things and causing slow-motion land collapse.

For example, “The rapid sinking is most likely caused by water leaking through abandoned wells into the Salado formation and dissolving salt layers, threatening possible ground collapse.” Or a nearby region “where significant subsidence from fresh water flowing through cracked well casings, corroded steel pipes and unplugged abandoned wells has been widely reported.”

This utterly weird, anthropocenic assemblage—or should I say anthroposcenic—has also changed the terrain in other ways. Water leaking into an underground salt formation has “created voids,” for example, which have “caused the ground to sink and water to rise from the subsurface, including creating Boehmer Lake, which didn’t exist before 2003.” It’s like upward-falling rain.

The site brings to mind the work of Lebbeus Woods: jammed-up subterranean infrastructure, in a sprawling knot of abandoned and semi-functional machinery, causing the solid earth to behave more like the sea.

Read more at Phys.org.

Logan

[Image: Philadelphia’s Logan neighborhood, via Google Maps].

On a work trip to Philadelphia last week, I learned about the city’s semi-evacuated Logan neighborhood. As you can see in the satellite view, above, a huge swath of the neighborhood was emptied of its residents, their buildings torn down—because the ground there is not really ground at all, but “an unstable foundation of cinder and ash on a creek bed.”

As the New York Times reported back in 1989, “row houses listed at angry angles, sidewalks were crumbled and the ground seemed no more steady than the nerves of the residents… The houses are sinking, officials say, because the soil is shifting.”

“Some parts of vacant houses, like front porches or walls, have collapsed on their own,” we read, as if the neighborhood had become a slow, gridded sea of unspectacular but relentless subterranean motion. Some houses took on the form of scuttled ships: “Some sag. Some list. Some lean into each other, Corinthian columns askew. One front porch juts upward, like the prow of a galleon. In some homes, the tilt is so bad it looks as if dishes would slide off the dinner table.”

[Image: The empty streets of Logan, via Google Street View].

Unsurprisingly, the results were often nightmarish. Houses were “constantly flooded by raw sewage” from leaking pipes. Gas lines exploded. Or this, also from the New York Times:

Elizabeth Stone, a secretary who has lived in Logan for 15 years with her husband and three children, said she moved her washing machine from the basement to her kitchen because the basement floor was caving in. Her dryer is still down there, but she will not go in the basement because she is afraid the floor will collapse. Besides, she said, there are rats down there and there seem to be more of them in the neighborhood because of shifting foundations.

Perhaps the most evocative description, however, comes from a 2010 entry on the blog Philadelphia Neighborhoods.

A lone medical facility, run by Dr. Donald Turner, was never moved, receiving no help or financial aid from the city, which claimed it was somehow more stable than literally every other building around it. This, despite the fact that the ground has visibly buckled and the evacuated neighborhood around it became a magnet for crime.

In the late 1980s, when the removal of the houses commenced, [Dr. Turner’s] building was spared. “My building should have been one of the first to go,” he says. Houses sat directly next to and across the street from his office. “This whole street was houses!” he exclaims, pointing to a cement path that now sinks into an empty field.

As residents were moved out, the houses were left vacant and became hot spots for criminal mischief. When they were eventually torn down, things got even worse. Turner’s office fell victim to numerous crimes. “People have drilled through the ceiling and climbed in through the back window,” he explains, “they want pills, once one of them had a gun.”

Dr. Turner thus put up a rather apocalyptic sign proclaiming, “Mayor Goode Thought My White Friends Would Help Me.”

The real kicker, however, is this: “‘One time a cancer patient fell in a sinkhole,’ says Turner, ‘I thought they’d shut me down for sure.’”

They did not. The building, incredibly, is apparently still there.

Demolition Ground


I love this story of the mysterious disappearing sinkholes of Indiana’s Mount Baldy, where deep pits in the sand dunes are opening and closing for reasons as yet to be determined. These “strange holes” have “appeared since last year, only to collapse and be filled in with sand a day later. Some of the holes were so deep they could not be measured with the researchers’ measuring tapes,” Livescience reports.

The area has thus been closed to the public while EPA scientists scan the site with ground-penetrating radar; this will help them to develop an “understanding of the overall internal architecture of the dune, using multispectral GPR and coring.”


After all, one of the leading theories is actually that buried structures, consumed by the dune’s migration over the past century, might have collapsed deep below the sand, creating these temporary sinkholes.

Imagine small buildings imploding under the weight of the landscape, like little cubic tombs held in place all this time by a dry glacier of sand and gravel, finally bursting inward as the strain becomes too much for them to carry—as if, beneath us in weird labyrinths of negative space, the invisible, slow-motion demolition of old buildings proceeds apace, detectable only as momentary pores and sinkholes breathing open and closed in the earth’s mobile surface.

(Images courtesy National Park Service).

Offworld Glaciology

[Image: Photo by Gerco de Ruijter, via but does it float].

A short article by Sam Kean for the Chemical Heritage Foundation in Philadelphia explores the world of “bizarro ice—ice that burns, ice that sinks instead of floating, ice literally out of this world.” For the most part, these are ices that have formed under extraordinary pressure, whether naturally or artificially applied, which “forc[es] H2O molecules into rhombuses, tetragons, and other alternative geometries.”

In some cases, the pressure is so great that the resulting ice “can stay solid at temperatures of thousands of degrees—a true freezer burn. If you could somehow plop chunks of these ices into a glass of liquid water, they’d vaporize it.” Incredibly, we read that, “at super-high pressures, some chemists predict that ice transforms into a metal.”

There is an ice “that’s structurally similar to diamonds,” Kean explains, that “probably exists in the upper atmosphere.” And there are exotic ices on other planets: “The dense, hot interiors of Neptune and Uranus probably contain chunks of nonhexagonal ices, as do exoplanets around distant stars, a potentially important consideration as we search for life beyond our solar system.”

[Image: The Sea of Ice by Caspar David Friedrich].

This latter remark brings to mind a book I downloaded in my recent PDF binge called The Science of Solar System Ices, edited by Murthy S. Gudipati and Julie Castillo-Rogez. It’s a mammoth book—more than 650 pages—that explores exotic ices found in comets, on exoplanets, on moons, and elsewhere in our solar system.

“The largest deposits of carbon dioxide ice,” we learn, “is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene and many tentative or inferred compounds,” including a long list of chemicals I can’t even pronounce let alone recognize or describe, forming ices with “unusual colors and spectral shapes.” There are even “organic” ices made of hydrocarbons.

[Image: The Monk by the Sea by Caspar David Friedrich].

How these ices produce landscapes is by far the most interesting aspect here, at least from the point of view of BLDGBLOG: how they glaciate, experience gravitational tides and weathering, melt from below due to volcanoes, reflect the alien skies shining down on them in distorted shapes and angled echoes, and even how they tectonically fracture into karst-like networks of sinkholes and caves.

Imagining snow storms of frozen methane on other planets while thinking about, for example, human artistic traditions of landscape representation, from the Hudson Valley School to Caspar David Friedrich—picturing massive and extraordinary widescreen scenes of glacial hills and valleys steaming in the outer darkness of the solar system and the paintings or photographs or even animated GIFs that might result—would extend the idea of the sublime to non-terrestrial landscapes and the sights they might someday reveal to human explorers.

[Image: Walking into a glacier: “Grindelwald Grotto, Bernese Oberland, Switzerland,” courtesy of the Library of Congress Prints & Photographs Division].

Art historians would gaze in awe at offworld glaciers of carbon dioxide ice and howling massifs of frozen nitrogen, where volcanoes erupt not with liquid rock but with “ice slurries” and groundwater exploding onto the landscape with the force of a Kilauea.

Perhaps someday you’ll be able to get a degree in the field of exploratory xenoglaciology, the study of rare and incredible landforms made of frozen chemicals in space.

(“Wild Ice” story spotted via @nicolatwilley).

The town at risk from cave-ins

In what sounds like the plot of a bad horror film, we read that “kids in Picher, Okla., are exposed to lead, and the ground is at risk of cave-ins” due to the “abandoned mines beneath the city.”

Turns out the whole town is now under “voluntary buyout” by the US government because the place is so polluted that no one should be living there. Tailings from abandoned lead and zinc mines are to blame; indeed, there are “giant gray piles of mining waste, known locally as ‘chat,’ some hundreds of feet tall and acres wide, that loom over abandoned storefronts and empty lots.”

[Image: “Chat piles” looming round the “abandoned storefronts and empty lots” of Picher, OK; photo by Matt Wright, author of the article I’ve been quoting. See also this photo gallery from the US Geological Survey’s own tour of Picher, or this series of images from 1919].

From the Washington Post:

Signs of Picher’s impending death are everywhere. Many stores along Highway 69, the town’s main street, are empty, their windows coated with a layer of grime, virtually concealing the abandoned merchandise still on display. Trucks traveling along the highway are diverted around Picher for fear that the hollowed-out mines under the town would cause the streets to collapse under the weight of big rigs. (!) In some neighborhoods, empty mobile homes sit rusting in the sun, their windows broken, their doors yawning open, the detritus of life—car parts, broken toys, pieces of carpet, rotting sofas—strewn across their front yards.

But what happens in twenty years’ time, when a group of joy-riding teenagers from across state lines find themselves driving through Picher in the late afternoon…? They park their car, laughing, and throw rocks through some windows; one of them sneaks behind the old neighborhood Piggly Wiggly and opens up the door of a small shed only to find the entrance to a mine—when, suddenly, the ground opens up on the main street and swallows all three of his friends.

He hears screaming—as well as what sound like whispering voices coming from beneath the ground. The sun setting, our naive hero of the high school football squad descends into the lead mines to find them…

Or has that film already been made?

(Thanks, Javier! See also Helltown USA and Cancer Villages).