White Out

I’ve been reading Christopher P. Heuer’s book Into the White. It looks at how the landscape and climate of the far North—the Arctic—threw the European imagination into a bit of a tailspin, presenting a kind of non-configurable problem that shut the operating system down, often leaving ship-bound humans bereft of words and struggling to create comprehensible images.

Early on in the book, Heuer describes journeys of Arctic exploration as “a confrontation with conditions that simply did not fit into European schemes of pictorial composition, space, selfhood, and communication.” Indeed, what Europeans saw there could not even be described in terms of similar landscapes back home—because there were none, Heuer writes: “being like nothing else, the Arctic regions confounded literary strategies of analogy.”

Frigid seas with no permanent land forms; drifting icebergs without clear shape or scale, constantly fragmenting into smaller masses and thus resisting the most basic concepts of counting and quantification; vast snow fields in places like Greenland and Canada where techniques of mapping and surveying broke down, and where—lacking visual features beyond sheer, endless whiteness—the burgeoning art of perspectival representation became impossible. Fathomless expanses of open water where alien hulks of ice, obscured by fog, drift through.

[Image: “The Sea of Ice” (1823-1824), Caspar David Friedrich.]

Often unable to sketch, describe, or explain what they saw there, European crews often left these bizarre and frightening experiences undocumented—as if an experience or situation can be so otherworldly, you cannot even describe it. No coordinate points, no baselines, no solid ground. (Of interest here would also be the work of expeditionary art historian William L. Fox, who has suggested that the Antarctic is equally challenging to human representational practices to the point of resisting human cognition itself.)

One of the most provocative aspects of the whole book for me is its implication that interstellar navigation, beyond planetary bodies, will pose similar—though certainly far more intense—challenges to human cognition, mapping, language, and measurement. This difficulty would presumably not be limited to the European imagination, of course, but to the terrestrial one. (Although it does raise the strange prospect that humans from Arctic regions could be the savviest interstellar navigators.)

In any case, Heuer’s book also points out that European expansion into vast new terrestrial regions, such as the Arctic and the South Atlantic, not just for scientific documentation but for “corporate resource exploitation,” as Heuer describes it, began just as perspectival representation was being developed in Renaissance Italy. That is, just as Europeans were attempting to conquer the infinite void of abstract architectural space through a series of mathematical grids and vanishing points, other Europeans were sailing off into novel terrestrial environments that resisted those same techniques, where the concept of scale itself broke down.

Hidden within this is perhaps a comment on art and commerce as equally concerned, in their own very different ways, with describing quantities beyond calculation—sheer plenty, limitless reserve, infinite exchange.

This leads to another of Heuer’s historical points—albeit one that, to me, reads more like coincidence than causation, but is nevertheless stunning in its visual power.

[Image: “Interior of Saint Bavo, Haarlem” (1631), Pieter Jansz, Saenredam; courtesy Philadelphia Museum of Art.]

Heuer writes, at some length, about how iconoclasm was surging through Western European churches at the time, with the effect that the same nations that were sending mariners out to map and exploit distant environments were also convulsing at home with the widespread destruction of religious imagery. He draws a wonderfully surreal comparison here between white-washed church interiors, denuded of their statues and ornamentation by iconoclasts, and the huge, featureless super-objects of the Arctic, the vaulted spans of icebergs loose on the waves, the looming glacial cliffs of Greenland, the apparently empty wastes of northeastern Canada.

This seems to suggest that iconoclasts painting church interiors white were psychologically of a pair with distant ships’ crews landing in all-white lands, sailing into all-white fog banks, gazing fearfully upon all-white ice, as if the interiors of European churches had become their own sort of Arctic but also that the Arctic had taken on the terrible, sublime dimensions of a religious experience, a theological encounter with the iconoclastic void. A fathomless void, an immeasurable drift.

So, contrary to Heuer’s own claim of Arctic landscapes “being like nothing else,” they were, in fact, like iconoclastic church interiors.

Nevertheless, again, this seems more like a historical coincidence to me—albeit a highly provocative one—than anything like cause and effect.

In fact, it might be fruitful to reimagine Heuer’s observation as the basis of a novel—or, for that matter, as the structure of a Terrence Malick film. A father, consumed with rage against the church, rallies with his compatriots to raid the interiors of cathedrals, stripping them of anything that represents the divine, decapitating statues, shattering windows, painting frescos white, endless white, everything white; even as his son, a mercantilist, perhaps angry with the world itself, on a quest for life-affirming capitalist novelty, sets sail into the Arctic, discovering—instead of abundance and plenty—a world exactly like that created, in acts of rage, by his father. Endless white, lacking in features, silenced of music. A void.

We are left, as our story comes to an end, staring into an expanse that suggests almost no visual difference between cataracts of ice looming over the son’s ship, lost in the Arctic, doomed, and the eerie, seemingly immeasurable interior of a church brutally whitewashed by a God-obsessed father.

Of course, these characters should probably be reversed: it is the parent who is mercantilist, looking for a life of material improvement and capitalist profit, setting sail in the name of imperial, corporate exploitation, while the child stays at home, consumed with new fundamentalisms, painting over images of the past out of a mistaken belief that negation itself is enough for societal rebirth and personal self-discovery.

Either way, both characters are left not cataloging new forms of significance or abundance, but in a world devastatingly whitewashed of meaning.

Anyway, Heuer’s book is interesting and worth a read. It has also achieved the seemingly impossible, which is that it has made me genuinely excited to read Erwin Panofksy again.

The Glacial Gothic, or the Cathedral as an “Avalanche on Pause”

[Image: Diagram from The Stones of Venice by John Ruskin.]

There are at least two interesting moments in John Ruskin’s book The Stones of Venice.

One is his description of buttresses.

Buttresses, Ruskin writes, are structures against pressure: a cathedral’s walls want to fall outward, for example, pushed aside by the relentless weight of the roof. But this gravitational pressure can be stabilized by an exoskeleton: a sequence of buttresses that will prevent those walls from collapsing outward.

However, Ruskin points out, there is a similar kind of pressure from the waves of the sea. Think of the curved hull of a ship, he writes, which is internally buttressed against the “crushing force” of the ocean around it. It is a kind of inside-out cathedral.

Consider other high-pressure environments where architecture can thrive—resting in the benthic abyss or twirling through the vacuum of outer space, where offworld stations rotate and spin through exotic gravitational scenarios—and you’ve perhaps envisioned what John Ruskin would be writing about today. Ship-buildings, buttressed against the void.

In any case, for Ruskin, buttresses perform a kind of gravitational judo: he describes “buttresses of peculiar forms, cunning buttresses, which do not attempt to sustain the weight, but parry it, and throw it off in directions clear of the wall.” They shed the load, so to speak, flipping it elsewhere, as if taking advantage of an opponent’s slow and graceless momentum.

…as science advances, the weight to be borne is designedly and decisively thrown upon certain points; the direction and degree of the forces which are then received are exactly calculated, and met by conducting buttresses of the smallest possible dimensions; themselves, in their turn, supported by vertical buttresses acting by weight, and these perhaps, in their turn, by another set of conducting buttresses: so that, in the best examples of such arrangements, the weight to be borne may be considered as the shock of an electric fluid, which, by a hundred different rods and channels, is divided and carried away into the ground.

It’s buttresses buttressing buttresses—or buttresses all the way down.

Ruskin reminds his readers, however, that a buttress’s function can even be seen outdoors, where he specifically cites Swiss landscape defenses. There, Ruskin writes, horizontal buttresses like defensive walls “are often built round churches, heading up hill, to divide and throw off the avalanches.” Again, it’s a question of parrying an oppositional force, deflecting it elsewhere.

[Image: “Profile of a buttress with vertical internal line, when the line of thrust coincides with the axis of the buttress,” taken from a paper called “Milankovitch’s Theorie der Druckkurven: Good mechanics for masonry architecture” by Federico Foce, in Nexus Network Journal.]

From an architectural point of view, you might say that a landscape is stationary until it buckles, shudders, or moves, becoming oceanic, heaving like the sea.

Or, to be pretentious and quote myself from an op-ed in the New York Times, “the ground itself is a kind of ocean in waiting. We might say that [the Earth] is a marine landscape, not a terrestrial one, a slow ocean buffeted by underground waves occasionally strong enough to flatten whole cities. We do not, in fact, live on solid ground: We are mariners, rolling on the peaks and troughs of a planet we’re still learning to navigate. This is both deeply vertiginous and oddly invigorating.”

For Ruskin, the buttress is an architectural technology—a spatial tool—that can be built to anticipate this act of marine transformation, a device that can prepare our buildings and cities to resist violent events in the landscape they are built upon.

With this in mind, it’s worth recalling a recent experiment that showed buildings can be partially shielded from the effects of earthquakes. An “invisibility cloak,” as researchers somewhat hyperbolically described it back in 2013, would use a “regular grid of cylindrical and empty boreholes” drilled into the earth to absorb and deflect seismic waves and thus protect certain structures from damage.

They would “parry it,” as Ruskin once wrote, “and throw it off in directions clear” of the city. In Ruskin’s terms, in other words, they would be buttresses: empty void-silos in the earth that nevertheless function like the exoskeletal cage of a cathedral or the internal ribs of a ship at sea.

[Image: Glacial logics diagrammed in The Stones of Venice by John Ruskin.]

The second interesting thing from The Stones of Venice—among many others, to be sure, but I will only focus on two here—is that, amazingly, for a book published back in 1853, Ruskin scales his analysis up to the point of suggesting that glaciers should be considered as complex architectural objects.

Ruskin describes “a curve about three quarters of a mile long,” for example, “formed by the surface of a small glacier of the second order.” This curve, he writes, is “the most beautiful simple curve I have ever seen in my life.” So, he wonders, how could it be applied to architecture? How could we learn from glaciers?

At this point, Ruskin draws a diagram—the one I’ve scanned, above—to highlight a variety of nested curves that he believes are hiding inside a particular glacier. These are organizational systems that extend for many miles at a time through the ice and that allegedly entail geometric lessons for architects.

The idea here—that Ruskin was trying to extract architectural lessons from glaciers nearly two centuries ago—is incredible to me.

After all, if the Gothic is an architectural language that, as writers such as Lars Spuybroek have compellingly shown, draws from the natural vocabulary of leaves, plants, tree roots, and so on, then this means that Ruskin is suggesting—in 1853!—a kind of Glacial Gothic, an architectural lesson drawn from continent-spanning masses of ice.

[Image: “A Crack in an Antarctic Ice Shelf Is 8 Miles From Creating an Iceberg the Size of Delaware”; image via Ohio State University.]

I’m reminded of an old t-shirt produced by the band Godflesh that described their music as an “Avalanche On Pause.”

This is a very Ruskinian description, we might say in the present context.

An avalanche on pause brings together Ruskin’s interests in landscape-scale structural events—such as glaciers and landslides—with his attention to the mechanics of cathedrals built to resist such imposing pressures. To freeze them in place. To press pause.

(Thanks to Marc Weidenbaum for reminding me of that Godflesh shirt many years ago.)

Building Digital with Timber, Mud, and Ice

[Image: From a project called “Slice” by HANNAH, as featured in FABRICATE 2020.]

The Bartlett School of Architecture recently put out two new books, freely available for download, FABRICATE 2020 and Design Transactions. Check them both out, as each is filled with incredibly interesting and innovative work.

Purely in the interests of time—by all means, download the books and dive in—I’ll focus on three projects rethinking the use of wood, clay, and ice, respectively, alongside new kinds of concrete formwork and 3D printing.

[Image: From “Slice” by HANNAH, as featured in FABRICATE 2020.]

For a project called “Slice,” Sasa Zivkovic and Leslie Lok of design firm HANNAH and Cornell University explore the use of “waste wood” killed by Emerald Ash Borer infestation.

[Image: From “Slice” by HANNAH, as featured in FABRICATE 2020.]

“Mature ash trees with irregular geometries present an enormous untapped material resource. Through high-precision 3D scanning and robotic fabrication on a custom platform, this project aims to demonstrate that such trees constitute a valuable resource and present architectural opportunities,” they explain.

[Images: From “Slice” by HANNAH, as featured in FABRICATE 2020.]

They continue on their website: “No longer bound to the paradigm of industrial standardization, this project revisits bygone wood craft and design based on organic, found and living materials. Robotic bandsaw cutting is paired with high-precision 3D scanning to slice bent logs from ash trees that are infested by the Emerald Ash Borer.”

I’m reminded of a point made by my wife, Nicola Twilley, in an article for The New Yorker last year about fighting wildfires in California. At one point, she describes attempts “to imagine the outlines of a timber industry built around small trees, rather than the big trees that lumber companies love but the forest can’t spare. In Europe, small-diameter wood is commonly compressed into an engineered product called cross-laminated timber, which is strong enough to be used in multistory structures.”

Seeing HANNAH’s work, it seems that perhaps another way to unlock the potential of small-diameter wood is through robotic bandsaw slicing.

[Image: From “Mud Frontiers” by Emerging Objects, as featured in FABRICATE 2020.]

For their project “Mud Frontiers,” Ronald Rael and Virginia San Fratello use 3D printing and “traditional materials (clay, water, and wheat straw), to push the boundaries of sustainable and ecological construction in a two phase project that explores traditional clay craft at the scale of architecture and pottery.”

[Image: From “Mud Frontiers” by Emerging Objects.]

“To do this,” they explain on their website, “we stepped out of the gallery and into the natural environment by constructing a low-cost, and portable robot, designed to be carried into a site where local soils could be harvested and used immediately to 3D print large scale structures.”

[Image: From “Mud Frontiers” by Emerging Objects.]

Finally—and, again, I would recommend just downloading the books and spending time with each, as I am barely scratching the surface here—we have a very cool project looking at “ice formwork” for concrete, developed by Vasily Sitnikov at the KTH Royal Institute of Technology in Stockholm.

[Image: Ice formwork for casting concrete, developed by Vasily Sitnikov, as featured in Design Transactions.]

Sitnikov’s method was initially devised as a way to save energy during the concrete-casting and construction process, but quickly revealed its own aesthetic and structural implications: “The variety of programmable functions for ice formwork is vast,” he writes, “across environmental design, programmable lighting conditions, acoustics, ventilation, insulation and structural-design weight-saving applications.”

[Image: Ice formwork for casting concrete, developed by Vasily Sitnikov.]

He has found, for example, that “spatial patterns… can be imposed on concrete, abandoning any use of petrochemicals in the fabrication process. Breaking away from the ‘solid’ image of conventional concrete, the technique of using ice as the formwork material enables the production of mesoscale spatial structures in concrete which would be impossible to manufacture with existing formwork materials.”

[Image: Ice formwork for casting concrete, developed by Vasily Sitnikov.]

Weaving, carving, cutting, molding: the two new Bartlett books have much, much more, including voluminous detail about each of the projects mentioned briefly above, so click on through and go wild: Design Transactions and FABRICATE 2020.

Strange Precipitation

It’s not only snow falling from the sky this winter, but microplastics, a holiday season marked by petrochemical drifts accumulating on our windowsills and roadsides.

European researchers have found much more than just plastics, in fact, snowing down on our shoulders: “Acrylates/polyurethanes/varnish/lacquer (hereafter varnish) occurred most frequently (17 samples), followed by nitrile rubber (16 samples), polyethylene (PE), polyamide, and rubber type 3 (13; ethylene-propylenediene rubber).”

That’s plastic, rubber, varnish, lacquer, and polyethylene—a true precipitation of the Anthropocene—snowing from the sky, as if we’ve embalmed the weather. Zombie snow.

Meanwhile, it seems as if snow itself is being redefined by these studies. For example, every winter, terrestrial landscapes are buried not just by crystals of frozen water, but by the remains of dead stars.

In what would read like a poem in any other context, ScienceNews reports that “exploding stars scattered traces of iron over Antarctic snow.” In other words, metallic fragments of dead stars can be found sprayed across ice at the bottom of our world.

This has cosmic implications:

The result could help scientists better understand humankind’s place in space. The solar system resides within a low-density pocket of gas, known as the local bubble. It’s thought that exploding supernovas created shock waves that blasted out that bubble. But the solar system currently sits inside a denser region within that bubble, known as the Local Interstellar Cloud. The detection of recently deposited iron-60 suggests that this cloud may also have been sculpted by supernovas, the researchers say.

Sculpted by supernovas. We exist within that space, once carved by the detonations of stars whose metallic remains snow down onto dead continents, forming drifts—someday, entire glaciers—of plastic, rubber, polyethylene, and more.

(Image: Snow, via the Adirondack Almanac. Related: Space Grain.)

Wandering Cliffs

[Image: ESA/Rosetta/MPS, via New Scientist].

Bringing to mind the landscape paintings of Peder Balke—or maybe Hokusai is more appropriate—entire cliffs seem to “wander” across the surface of Comet 67P.

“The hills may not be alive, but they are moving,” New Scientist reports. “The comet 67P/Churyumov-Gerasimenko has small cliffs that migrate across the landscape for months at a time,” apparently moving toward—not away from—the sun “at a rate of between 3 and 7 centimetres an hour.”

“The cliffs, or scarps, in question are only between 1 and 2 metres tall,” we read, “but on a comet the size of 67P, which is just 4 kilometres across at its longest point, they aren’t negligible—cliffs of a similar scale on Earth would be about 3 kilometres high.”

Frozen waves of geology, marching toward the sun in space.

Imagine a novel about a landscape photographer sent to record such sights, and the things she sees, the weird remoteness of it all, the camp sites and technical difficulties, where exposure time and depth-of-focus becomes an interplanetary concern, the ground pulsing continuously beneath her feet in a slow tide, a creeping sludge, that will never reach completion.

(Previously on BLDGBLOG: “We don’t have an algorithm for this”).

Easy Freeze

[Image: Fortress of Solitude from Superman, via the Superman Wiki].

Writing for Ars Technica, Jennifer Ouellette reports on “an exotic form of ice dubbed ‘ice VII’ that physicists can create in the laboratory.” It is apparently capable of “freezing an entire world within hours.”

Ice VII can only be created under conditions of literally unearthly pressure: its “oxygen atoms are arranged in a cubic shape, something that only occurs at pressures more than 10,000 times that on Earth’s surface. It’s created in the lab by zapping thin samples of water sandwiched between plates with high-intensity shock waves or laser pulses.”

Those “high-intensity shock waves” surge through water at enormous speed, rearranging the atoms in what sounds a bit like the cracking of a whip. Indeed, as one of the scientists who discovered Ice VII explains, the ice “forms in a very unusual way—by popping into existence in tiny clusters of about 100 molecules and then growing extremely fast, at over 1,000 miles per hour.”

Although we are obviously talking about a physical process unattainable outside constrained laboratory conditions, it is nonetheless interesting to imagine this being controlled somehow and used in the wild here on Earth to create, say, instant ice bridges, pop-up hockey rinks, or other architectural spans and structures flash-frozen into existence at 1,000 miles per hour.

Cathedrals made of ice surge up from lakes in the Florida panhandle to the cries of stunned passers-by.

Read more at Ars Technica or Physical Review Letters.

The Labyrinth of Night, The Polar Gothic, and a Golden Age for Landscape Studies

It’s hard to resist a place called the Noctis Labyrinthus, or “the Labyrinth of Night,” especially when it’s on Mars.

NoctisLabyrinthus[Image: Courtesy ESA/DLR/FU Berlin].

“This block of martian terrain, etched with an intricate pattern of landslides and wind-blown dunes, is a small segment of a vast labyrinth of valleys, fractures and plateaus,” the European Space Agency reported earlier this week.

“As the crust bulged in the Tharsis province it stretched apart the surrounding terrain, ripping fractures several kilometres deep and leaving blocks—graben—stranded within the resulting trenches,” the ESA adds. “The entire network of graben and fractures spans some 1200 km, about the equivalent length of the river Rhine from the Alps to the North Sea.”

In other words, it’s an absolutely massive expanse of desert canyons and landslides, stretching roughly the distance from Switzerland to Rotterdam—a “700-mile labyrinth of fractures and landslides,” in the words of the reliably interesting Corey Powell on Twitter.

Imagine hiking there.

NoctisLabyrinthusAerial[Image: Courtesy ESA/DLR/FU Berlin].

We are living in something of a golden age for landscape studies. Over a remarkably short span of time, for example, we’ve learned that there are sinkholes on comets—that is, that comets have undergrounds. They have pores, caves, and tunnels, with sinkholes explosively airing this subterranean world into outer space. These “mysterious, steep-sided pits—one up to 600 feet wide and 600 feet deep,” as National Geographic described them, indicate that “there must be gaps inside.” Picture caves and tunnels evaporating in the darkness, before collapsing in on themselves in a crystalline flash.

Meanwhile, I have always loved the fact that there is a mountain range on Mars named after dead American astronauts, as if the Red Planet is somehow haunted in advance of human arrival by the mythological figures of explorers who never made it there. But this is just one small example of how a radically unfamiliar environment can gradually become known through the process of naming.

2016-01-01 22.59.25[Image: From India’s Mars Orbiter, via @coreyspowell].

My wife, Nicola Twilley, was actually at the Johns Hopkins Applied Physics Laboratory for the recent Pluto flyby, covering it for The New Yorker; she wrote a great description of how the former planet became a true landscape:

As the scientists traced tendrils of reddish brown and speculated as to the rate of melt at the edge of a two-toned ice patch near Pluto’s equator, the impossibly distant world came to life. Fed up with referring to features as, for instance, “the black circle at two o’clock” and “the big white patch,” the team had started to give them names—first nicknames, such as “the heart” and “the whale,” and then unofficial but more formal names drawn from the mythology of the underworld. The whale became Lovecraft’s Cthulhu, and a nearby dark smudge was christened Balrog, after the demons of Tolkien’s Middle-earth. An alien landscape had started to become a collection of places: knowable, if not yet known.

Interestingly, it seems that names come first, algorithms later.

In any case, while naming, of course, lends an air of familiarity to alien terrains—or knowability, we might say—the utterly bonkers nature of these landscapes remains extraordinary.

Nicky later revisited the subject, for example, writing that “the reddish patches” seen on Pluto might actually be “the organic material nicknamed ‘star tar,’ a precursor to life”—sludge awaiting sentience—and that “cryovolcanoes—volcanoes that spew slushy methane and nitrogen ice rather than molten rock,” might exist at the planet’s south pole.

There, this slow-moving matrix of frozen elements would circulate amongst other “exotic ices” in the distant cold, surely another kind of “labyrinth of night,” if there ever was one.

Think of what writer Victoria Nelson has called the “polar Gothic,” referring to an era of science-fictional representations of the Earth’s own polar regions as places of psychological menace and theological mystery; now picture weird slurries of nitrogen and star-tar sinkholes in a region named after Cthulhu, and it seems that perhaps the great age of landscape exploration has only now truly begun.

Consider, for example, this tweet by Rob Minchin, referring to the latest geological revelations coming from Pluto, a world of nitrogen glaciers and ice tectonics. “Water ice floats on nitrogen or CO ice,” he explains. This means, unbelievably, that “numerous mountains on Pluto appear to be floating.”

pluto[Image: Pluto, via @CoreySPowell].

Even within our own solar system, it seems, if you have an idea for a landscape so unreal it borders on pure fantasy, there is a planet, comet, or asteroid already exceeding it.

(In addition to @CoreySPowell, another good Twitter account for offworld landscape studies is @LoriKFenton, as the images seen at the link make clear).

Landscapes of Drone Control

[Image: Photo courtesy Mountain Drones].

A Colorado-based company called Mountain Drones is developing a line of octocopters armed with small explosive charges as a possible tool for setting off artificial avalanches. It’s landscape design by drone.

“Here’s how it would work,” Outside explains:

Instead of spending hours bootpacking to a ridgeline to drop a hand charge, ski patrollers would select a preprogrammed route for the drone to fly and manually drop the charges to clear the slope from a safe distance. Onboard sensors will calculate the snow-water equivalent—a measure of the snowpack’s water content—and depth, allowing patrollers to identify persistent weak layers and breaking points and helping them determine where to make drops.

For now, of course, this is all still stuck at the proposal stage, although the company estimates—somewhat over-optimistically, it seems—that it will be “at least one or two years” before the proper regulations are passed.

Until then, the drones will instead be flying test routes with mock explosives, running various patterns across the mountains in anticipation of the future landscape events they will trigger.

“We don’t have an algorithm for this”

[Image: Comet 67P, via ESA].

In the story of how European Space Agency researchers are scrambling to locate—and possibly move—the Philae probe, which they successfully landed on Comet 67P two days ago, there’s an interesting comment about computer vision and the perception of exotic landscapes.

[Image: Comet 67P, via New Scientist].

“We’re working our eyes off,” one of the scientists says to New Scientist, describing how they are personally and individually poring over photographs of the comet.

“It’s an entirely manual process,” New Scientist continues, “because the complex and bizarre landscape of comet 67P defies any kind of automated search. ‘We don’t have an algorithm for this,’ he says.”

We don’t have an algorithm for this.

[Image: The irregular terrain of Comet 67P, via ESA].

It would be interesting to develop a taxonomy of landscapes based on their recognizability to algorithms. This would tell you as much about how computers see the world as it would about the aesthetic assumptions—even the geological biases—of the people who programmed those computers.

Think, for example, of Adam Harvey’s work, asking When Is An Apple No Longer An Apple? That project explored the point at which machine-learning algorithms could no longer distinguish the iconic fruit from a jumble of colorful objects.

Or take Harvey’s more recent CV Dazzle experiment, which looked at how to prevent facial recognition software from identifying a face at all through the clever use of cosmetic camouflage.

However, in the case of Comet 67P and other extreme topographic environments, we would be looking at when a landscape is no longer a landscape, so to speak, at least in terms of the computer-vision algorithms programmed to analyze it.

[Image: Comet 67P, via ESA].

What other landscapes fall within this category—of spatial environments unrecognizable to machines—and what do those spaces reveal about the dimensional prejudices of the algorithm? Light and shadow; depth and range; foreground and background; geometry and complexity.

Bump Adam Harvey’s investigations up to the scale of a landscape, and a million potential design projects beckon. Learning from Comet 67P.

(Earlier on BLDGBLOG: The Comet as Landscape Art).

The Comet as Landscape Art

[Image: Photo courtesy ESA].

Intrigued by these images as an example of how the tradition of landscape representation has rapidly progressed—from the Romantics and the Hudson River School to Rosetta—I felt compelled to post a few photos of the craggy and glacial surface of Comet 67P/Churyumov–Gerasimenko, sent back to Earth yesterday from the European Space Agency’s Rosetta spacecraft.

The surface of the comet “is porous, with steep cliffs and house-sized boulders,” making it earth-like yet deeply treacherous, an irregular terrain to photograph and a dangerous place to land.

[Image: Photo courtesy ESA].

It is the notion of “land” here that is most interesting, however, as this is really just the imposition of a terrestrial metaphor onto a deeply alien body. Yet the comet is, in effect, literally a glacier: a malleable yet permanently frozen body of ice hurtling through space, occasionally exploding in comas and tails of vapor.

It is “an ancient landscape,” we read, “and yet one that looks strangely contemporary as the sun vaporizes ice, reworking the terrain like a child molding clay.”

Think Antarctica in a winter storm, not southern Utah—or Glacier National Park, not the Grand Canyon.

[Image: Photo courtesy ESA].

Along those lines, some of the most provocative writing on what it means to visually represent the frozen and hostile landscapes of the Antarctic is by writer William L. Fox, whose work offers some useful resonance here.

Fox has written, for example, about the technical and even neurological difficulties in accurately representing—let alone comprehending or simply navigating—Antarctic space and the vast forms that frame it.

Distant landscapes distorted by thermal discontinuities; white levels pushed to the absolute limit of film chemistry; impossible contours throwing off any attempt at depth perception; even the difficulty of distinguishing complicated mirages from actual landforms: these are all part of the challenge of creating images of an exotic landscape such as the Antarctic.

As Fox writes, it was even specifically the tradition of Dutch landscape painting, combined with the maritime practice of sketching coastal profiles, that first introduced the visual world of the Antarctic to western viewers: it was thus seen as an ominous, ice-clogged horizon of fog and low clouds looming always just slightly out of ship’s reach at the bottom of the world.

He calls this the genre of “representational exploration art.”

[Image: Photo by Stuart Klipper from his fantastic book, The Antarctic: From the Circle to the Pole, with a foreword by William L. Fox].

In one interesting passage in his book Terra Antarctica, he suggests that the south polar landscape is so extreme, it often resists natural analogy. As Fox describes it, the wind-carved boulders and isolated pillars and cliffs of ice are more like “artworks by Salvador Dalí and Henry Moore, evoking the spirit of surrealism with the former and modernist forms with the latter. The Antarctic is so extreme to our visual expectations that, once we attempt to move beyond measurement to describe it, analogies with other parts of nature fall short, and we resort to comparisons with cultural artifacts that push at the boundaries of our perceptions.”

These include “cultural artifacts such as sculpture and architecture, products more of the imagination than of nature.”

Consider, for instance, that comet 67P is widely known today as the “rubber-duck comet” due to its bifurcated structure, implying, as Fox suggests with the Antarctic, that no natural analogy seemed adequate for describing the comet’s geometry.

[Image: The gateway arches of the Antarctic; photo by Stuart Klipper from, The Antarctic: From the Circle to the Pole, foreword by William L. Fox].

But what are we to make of comet 67P now that we can see it as a physical landscape, not just an ephemeral optical phenomenon passing, at great distance, through the sky? When a blur becomes focused as terrain, what is the best way to describe it? What visual or textual traditions are the most useful or evocative—vedas and sutras or laboratory reports?

Put another way, is poetry as appropriate as a scientific survey in such a circumstance—should “we attempt to move beyond measurement to describe it,” in Fox’s words—and, if not, what new genres of exploration art might result from this spatial encounter?

I’m reminded here of poet Christian Bök’s wry remark on Twitter: “I am still amazed that poets insist on writing about their divorces, when robots are taking pictures of orange, ethane lakes on Titan…”

Now that humans are beginning to land semi-autonomous camera-ships on the frozen ice fields of passing comets, sending back the (off)world’s strangest landscape art—as if a direct line runs from, say, the pastoral landscapes of Claude Lorrain or the elemental weirdness of J.M.W. Turner to the literally extraterrestrial boulders and gullies depicted by Rosetta—how should our own descriptive traditions adapt? What, we might ask, is comet 67P’s role in art history?

[Image: Approaching 67P, via the ESA].

Where Borders Melt

[Image: From Italian Limes. Photo by Delfino Sisto Legnani, courtesy of Folder].

One of the most interesting sites from a course I taught several years ago at Columbia—Glacier, Island, Storm—was the glacial border between Italy and Switzerland.

The border there is not, in fact, permanently determined, as it actually shifts back and forth according to the height of the glaciers.

This not only means that parts of the landscape there have shifted between nations without ever really going anywhere—a kind of ghost dance of the nation-states—but also that climate change will have a very literal effect on the size and shape of both countries.

[Image: Due to glacial melt, Switzerland has actually grown in size since 1940; courtesy swisstopo].

This could result in the absurd scenario of Switzerland, for example, using its famed glacier blankets, attempting to preserve glacial mass (and thus sovereign territory), or it might even mean designing and cultivating artificial glaciers as a means of aggressively expanding national territory.

As student Marissa Looby interpreted the brief, there would be small watchtowers constructed in the Alps to act as temporary residential structures for border scientists and their surveying machines, and to function as actual physical marking systems visible for miles in the mountains, somewhere between architectural measuring stick for glacial growth and modular micro-housing.

But the very idea that a form of thermal warfare might break out between two countries—with Switzerland and Italy competitively growing and preserving glaciers under military escort high in the Alps—is a compelling (if not altogether likely) thing to consider. Similarly, the notion that techniques borrowed from landscape and architectural design could be used to actually make countries bigger—eg. through the construction of glacier-maintenance structures, ice-growing farms, or the formatting of the landscape to store seasonal accumulations of snow more effectively—is absolutely fascinating.

[Images: From Italian Limes. Photos by Delfino Sisto Legnani, courtesy of Folder].

I was thus interested to read about a conceptually similar but otherwise unrelated new project, a small exhibition on display at this year’s Venice Biennale called—in English, somewhat unfortunately—Italian Limes, where “Limes” is actually Latin for limits or borders (not English for a small acidic fruit). Italian Limes explores “the most remote Alpine regions, where Italy’s northern frontier drifts with glaciers.”

In effect, this is simply a project looking at this moving border region in the Alps from the standpoint of Italy.

[Image: From Italian Limes. Photo by Delfino Sisto Legnani, courtesy of Folder].

As the project description explains, “Italy is one of the rare continental countries whose entire confines are defined by precise natural borders. Mountain passes, peaks, valleys and promontories have been marked, altered, and colonized by peculiar systems of control that played a fundamental role in the definition of the modern sovereign state.”

[Images: From Italian Limes. Photos by Delfino Sisto Legnani, courtesy of Folder].

However, they add, between 2008 and 2009, Italy negotiated “a new definition of the frontiers with Austria, France and Switzerland.”

Due to global warming and and shrinking Alpine glaciers, the watershed—which determines large stretches of the borders between these countries—has shifted consistently. A new concept of movable border has thus been introduced into national legislation, recognizing the volatility of any watershed geography through regular alterations of the physical benchmarks that determine the exact frontier.

[Images: From Italian Limes. Photos by Delfino Sisto Legnani, courtesy of Folder].

The actual project that resulted from this falls somewhere between landscape surveying and technical invention—and is a pretty awesome example of where territorial management, technological databases, and national archives all intersect:

On May 4th, 2014, the Italian Limes team installed a network of solar-powered GPS units on the surface of the Similaun glacier, following a 1-km-long section of the border between Italy and Austria, in order to monitor the movements of the ice sheet throughout the duration of the exhibition at the Corderie dell’Arsenale. The geographic coordinates collected by the sensors are broadcasted and stored every hour on a remote server via a satellite connection. An automated drawing machine—controlled by an Arduino board and programmed with Processing—has been specifically designed to translated the coordinates received from the sensors into a real-time representation of the shifts in the border. The drawing machine operates automatically and can be activated on request by every visitor, who can collect a customized and unique map of the border between Italy and Austria, produced on the exact moment of his [or her] visit to the exhibition.

The drawing machine, together with the altered maps and images it produces, are thus meant to reveal “how the Alps have been a constant laboratory for technological experimentation, and how the border is a compex system in evolution, whose physical manifestation coincides with the terms of its representation.”

The digital broadcast stations mounted along the border region are not entirely unlike Switzerland’s own topographic markers, over 7,000 “small historical monuments” that mark the edge of the country’s own legal districts, and also comparable to the pillars or obelisks that mark parts of the U.S./Mexico border. Which is not surprising: mapping and measuring border is always a tricky thing, and leaving physical objects behind to mark the route is simply one of the most obvious techniques.

As the next sequence of images shows, these antenna-like sentinels stand alone in the middle of vast ice fields, silently recording the size and shape of a nation.

[Images: From Italian Limes. Photos by Delfino Sisto Legnani, courtesy of Folder].

The project, including topographic models, photographs, and examples of the drawing machine network, will be on display in the Italian Pavilion of the Venice Biennale until November 23, 2014. Check out their website for more.

Meanwhile, the research and writing that went into Glacier, Island, Storm remains both interesting and relevant today, if you’re looking for something to click through. Start here, here, or even here.

[Image: From Italian Limes. Photo by Delfino Sisto Legnani, courtesy of Folder].

Italian Limes is a project by Folder (Marco Ferrari, Elisa Pasqual) with Pietro Leoni (interaction design), Delfino Sisto Legnani (photography), Dawid Górny, Alex Rothera, Angelo Semeraro (projection mapping), Claudia Mainardi, Alessandro Mason (team).