Xolographic Biology

[Image: Plankton via the Seattle Aquarium.]

The description of this new 3D-printing technique, published in Nature, is immensely evocative. The process “relies on chemical reactions triggered by the intersection of two light beams,” using that light “to rapidly solidify an object in a volume of a liquid precursor.”

Its developers call it xolography “because it uses two crossing (x) light beams of different wavelengths to solidify a whole object (holos is the Greek word for whole).”

But the whole thing sounds like some weird new metaphor for the origins of biology: light shining into susceptible chemistries in a warm little pond somewhere, synthesizing into slowly-growing forms. From the Miller-Urey experiment to photosynthetic 3D printing.

The ensuing mechanics are hardly poetic, but are nevertheless worth reading:

A rectangular sheet of light with a set thickness is shone through a volume of a viscous resin. The wavelength of the light is chosen to excite molecules known as dual-colour photoinitiators (DCPIs) dissolved in the resin by cleaving a molecular ring in the backbone of the molecule; this reaction occurs only within the sheet of light.

A second beam of light projects an image of a slice of the 3D object to be printed into the plane of the light sheet. The wavelength of the second beam is different from that of the first and causes any excited DCPI molecules to initiate polymerization of the resin, solidifying the slice. The resin volume is then moved relative to the position of the light sheet, which is fixed. This changes the position of the light sheet in the resin, so the activation and initiation processes can begin again at a new position, thereby building up the object slice by slice.

Forms emerging as if from nowhere, out of intersecting planes of light—or beams passing through one another in the shallow waters of a sea, materializing into bodies. Tiny little plankton drifting in the sun.

Anyway, to use such an interesting process simply to 3D-print new children’s toys or architectural parts seems both anticlimactic and strangely on par with our world, which is already so good at hiding interesting metaphors in the everyday objects around us.

Building Digital with Timber, Mud, and Ice

[Image: From a project called “Slice” by HANNAH, as featured in FABRICATE 2020.]

The Bartlett School of Architecture recently put out two new books, freely available for download, FABRICATE 2020 and Design Transactions. Check them both out, as each is filled with incredibly interesting and innovative work.

Purely in the interests of time—by all means, download the books and dive in—I’ll focus on three projects rethinking the use of wood, clay, and ice, respectively, alongside new kinds of concrete formwork and 3D printing.

[Image: From “Slice” by HANNAH, as featured in FABRICATE 2020.]

For a project called “Slice,” Sasa Zivkovic and Leslie Lok of design firm HANNAH and Cornell University explore the use of “waste wood” killed by Emerald Ash Borer infestation.

[Image: From “Slice” by HANNAH, as featured in FABRICATE 2020.]

“Mature ash trees with irregular geometries present an enormous untapped material resource. Through high-precision 3D scanning and robotic fabrication on a custom platform, this project aims to demonstrate that such trees constitute a valuable resource and present architectural opportunities,” they explain.

[Images: From “Slice” by HANNAH, as featured in FABRICATE 2020.]

They continue on their website: “No longer bound to the paradigm of industrial standardization, this project revisits bygone wood craft and design based on organic, found and living materials. Robotic bandsaw cutting is paired with high-precision 3D scanning to slice bent logs from ash trees that are infested by the Emerald Ash Borer.”

I’m reminded of a point made by my wife, Nicola Twilley, in an article for The New Yorker last year about fighting wildfires in California. At one point, she describes attempts “to imagine the outlines of a timber industry built around small trees, rather than the big trees that lumber companies love but the forest can’t spare. In Europe, small-diameter wood is commonly compressed into an engineered product called cross-laminated timber, which is strong enough to be used in multistory structures.”

Seeing HANNAH’s work, it seems that perhaps another way to unlock the potential of small-diameter wood is through robotic bandsaw slicing.

[Image: From “Mud Frontiers” by Emerging Objects, as featured in FABRICATE 2020.]

For their project “Mud Frontiers,” Ronald Rael and Virginia San Fratello use 3D printing and “traditional materials (clay, water, and wheat straw), to push the boundaries of sustainable and ecological construction in a two phase project that explores traditional clay craft at the scale of architecture and pottery.”

[Image: From “Mud Frontiers” by Emerging Objects.]

“To do this,” they explain on their website, “we stepped out of the gallery and into the natural environment by constructing a low-cost, and portable robot, designed to be carried into a site where local soils could be harvested and used immediately to 3D print large scale structures.”

[Image: From “Mud Frontiers” by Emerging Objects.]

Finally—and, again, I would recommend just downloading the books and spending time with each, as I am barely scratching the surface here—we have a very cool project looking at “ice formwork” for concrete, developed by Vasily Sitnikov at the KTH Royal Institute of Technology in Stockholm.

[Image: Ice formwork for casting concrete, developed by Vasily Sitnikov, as featured in Design Transactions.]

Sitnikov’s method was initially devised as a way to save energy during the concrete-casting and construction process, but quickly revealed its own aesthetic and structural implications: “The variety of programmable functions for ice formwork is vast,” he writes, “across environmental design, programmable lighting conditions, acoustics, ventilation, insulation and structural-design weight-saving applications.”

[Image: Ice formwork for casting concrete, developed by Vasily Sitnikov.]

He has found, for example, that “spatial patterns… can be imposed on concrete, abandoning any use of petrochemicals in the fabrication process. Breaking away from the ‘solid’ image of conventional concrete, the technique of using ice as the formwork material enables the production of mesoscale spatial structures in concrete which would be impossible to manufacture with existing formwork materials.”

[Image: Ice formwork for casting concrete, developed by Vasily Sitnikov.]

Weaving, carving, cutting, molding: the two new Bartlett books have much, much more, including voluminous detail about each of the projects mentioned briefly above, so click on through and go wild: Design Transactions and FABRICATE 2020.

Fab

[Image: “The Sphere” by Oliver Tessman, Mark Fahlbusch, Klaus Bollinger, and Manfred Grohmann].

The Bartlett School of Architecture has made all three volumes of Fabricate, their excellent series of books and conference proceedings dating back to 2011, free to download.

[Image: Matter Design’s La Voûte de LeFevre, Banvard Gallery (2012)].

More than 700 pages’ worth of technical experiments, speculative construction processes, new industrial tools, and one-off prototypes, the books are a gold mine for research and development.

[Image: Greg Lynn’s “Embryological House,” Venice Biennale (2002)].

3D printers, buoyant robots, multi-axis milling machines, directed insect-secretion, cellular automata, semi-autonomous bricklaying, self-assembling endoskeletons, drone weaving—it’s hard to go wrong with even the most cursory skimming of each volume, and that doesn’t even mention the essays and interviews.

[Image: “Custom forming tool mounted on the six-axis robotic arm,” via Fabricate 2014]

Download each book—from 2017, 2014, and 2011—and be prepared to lose a few days reading through them.

Return of the Brick Swarm

A short video has been released documenting the brick swarm project mentioned here last month, in which Swiss architects Gramazio & Kohler deploy semi-autonomous flying robots to assemble a structure of foam bricks. However, it’s as if the architects underestimate the interest of their own work, fast-forwarding through the bulk of the assembly process as if no one would want to watch such a thing (or perhaps their robots were less graceful than originally hoped). Either way, check out the results, embedded above.

(Thanks to phenrydelphia for the tip!)

Brick Swarm

[Image: From “Flight Assembled Architecture” by Gramazio & Kohler].

Semi-autonomous flying robots programmed by Swiss architects Gramazio & Kohler “will lift, transport and assemble 1500 polystyrene foam bricks” next month—starting 2 December 2011—at the FRAC Center in France. The result, they hope, will be a “3.5 meter wide structure.”

[Image: From “Flight Assembled Architecture” by Gramazio & Kohler].

According to the architects, this will serve as an experimental test-run for the construction of a hypothetical future megastructure—presumably requiring full-scale, autonomous, GPS-stabilized helicopters. However, I’d think that even a small insectile swarm of robot bricklayers piecing together a new low-rise condominium somewhere—its walls slowly materializing out of a cloud of rotors and drones—would be just as compelling.

(Earlier on BLDGBLOG: Flying Robotic Construction Cloud and Robotism, or: The Golden Arm of Architecture).

Fabricate

[Images: (top to bottom) Projects by Asbjørn Søndergaard , Marta Malé-Alemany, Wes Mcgee, and Nat Chard, courtesy of Fabricate].

Fabricate is the place to be in London next month, when a group of “pioneers in design and making within architecture, construction, engineering, manufacturing, materials technology and computation” all descend on the Bartlett School of Architecture for a two-day exchange of techniques and ideas.

As the conference organizers explain, topics “will include: how digital fabrication technologies are enabling new creative and construction opportunities, the difficult gap that exists between digital modeling and its realization, material performance and manipulation, off-site and on-site construction, interdisciplinary education, economic and sustainable contexts.”

[Image: A project by Amanda Levete Architects, courtesy of Fabricate].

Speakers include Philip Beesley, Neri Oxman, Nat Chard, Mette Ramsgard Thomsen, Matthias Kohler, Mark Burry, and many more. Follow their Twitter feed for further updates, and check out the conference website for information on attending.

In this context, I’m reminded of the “giant 3D loom” that’s been invented to “weave” parts for a “supercar.” More specifically, it’s “a high-tech circular loom, guided by lasers, that can weave 3D objects.”

The “supercar” in question, made by Lexus, “is being used as a test bed for newly-designed parts made from carbon fibre and plastic. Compared to steel or aluminium, it makes the car stronger and lighter but producing these components is much more time-consuming: only one car is currently being assembled per day.”

According to Lexus, 3D weaving technology reduces the volume of materials used by 50 per cent and increases their strength. The automated process should also make it easier to produce a large volume of parts in the future. They hope to use this machine, and other carbon fibre manufacturing technologies, to create more efficient cars.

Or more efficient buildings.

Get one of these circular superlooms in London for the Fabricate conference; Lexus can offer some corporate sponsorship to make it worthwhile, and you can weave a new structure in its entirety each day, unleashing this hypnotic race of machine-spiders and their laser-assisted loom.

Also, check out this video:

New industrial shapes emerge from a slow cyclone of threaded metal. Future silks for future objects.

In any case, if you’re in London on 15-16 April, be sure to check out Fabricate, and, if you see the organizers, tell them you read about it on BLDGBLOG.

The Robot and the Architect are Friends

[Image: The architect and his construction robots by Villemard].

In 1910, French artist Villemard produced a series of illustrations depicting what life might be like in the year 2000, including an architect and his robotic construction crew.

In an article published last summer in Icon, called “The Robot and the Architect are Friends,” Will Wiles wrote that Swiss architects Gramazio & Kohler “have a vision: architecture using robotics to take command of all aspects of construction. Liberated from the sidelines, the profession would be freed to unleash all its creative potential—all thanks to its obedient servants, the robots. But first, architects must learn the robots’ language.”

[Image: Courtesy of Icon].

It all sounds deceptively easy at first: the architects have merely to program their robotic arm “to pick up a brick and place it, and then to repeat the process with variations. When this program runs, the result is a wall.”

The machine itself moves with the clipped grace we associate with robotics, performing neat, discrete actions that contain within them an assortment of fluid swivels and turns. These quick-slow, deliberate movements are hypnotic. It’s beautiful to watch but, because it moves in a way that looks animal while being unlike anything we know in nature, there’s something in it that’s inescapably unnerving.

Given multiple robots, sufficient bricks, complex instructions, and enough time, “extraordinary forms” can result, patterned and pixellated, brick-by-brick.

[Image: “Pike Loop” (2009) by Gramazio & Kohler].

“Considering the revolutionary potential of their work,” Wiles writes, “you might expect a note of utopian zeal from the pair.” He quickly adds, on the other hand, that, “if you want dazzling Wellsian predictions, delivered with glittering eyes, of future armies of architect-controlled mechanoids transforming the world, you’ve come to the wrong place.” Gramazio & Kohler’s vision is, instead, “understated, modest, [and] reasonable.”

Nonetheless, some combination of Villemardian enthusiasm—airborne tennis!—with rigorous architectural robotics, and perhaps even with emerging new brick designs and a new generation of 3D printers, is an enticing vision to pursue for the future of building construction.

(Villemard image originally seen via Selectism, thanks to a tip from Jon Bucholtz. Earlier on BLDGBLOG: Flying Robotic Construction Cloud).

Modular Advances

[Image: Constructing with BeadBricks by Rizal Muslimin, courtesy of Brickstainable].

The winners of this year’s Brickstainable design competition were announced last week, and two of the technical award-winners are actually quite interesting.

[Images: BeadBricks by Rizal Muslimin, courtesy of Brickstainable].

I’m particularly taken by a submission called BeadBricks by Rizal Muslimin, described as able to facilitate the design of microclimates “in and around buildings” by allowing variable levels of porosity in the facade. BeadBricks could thus allow architects “to modulate the environmental factors including sunshine, wind, thermal mass, and evaporative cooling.”

The system, Muslimin explains, consists of “two bricks (A and B) with four basic rules that can generate shape in one, two and three dimensional space.” Further, “the bricks are decorated with a pattern that can generate various ornaments by rotating them along its vertical or horizontal axis.”

[Image: Constructing with BeadBricks by Rizal Muslimin, courtesy of Brickstainable].

The overall technical winner is also worth checking out: the EcoCeramic Masonry System, a “Recombinant and Multidimensional” molded terracotta brick devised by Kelly Winn and Jason Vollen.

[Image: The EcoCeramic Masonry System by Kelly Winn and Jason Vollen, courtesy of Brickstainable].

As Brickstainable describes it, their brick system “showcases the ability to look at new ceramic-based wall assemblies. Strategies include thermal dynamics, self-shading, moisture reduction, hydroscopic, evaporative, and termite behavior studies.”

[Images: The EcoCeramic Masonry System by Kelly Winn and Jason Vollen, courtesy of Brickstainable].

Meanwhile, a related project comes to us from designer Dror Benshetrit, who recently invented his own modular system, called QuaDror. On the other hand, it’s not really a “brick”; Fast Company describes it as “a structural joint that looks a little like a sawhorse, but can fold flat, making it both stunningly sturdy, remarkably flexible, and aesthetically pleasing.” Check out the video:

The suggested uses for QuaDror “include support trestles for bridges, sound buffer walls for highways, a speedy skeleton for disaster or low-income housing, and quirky public art.”

All in all, I would love to see more exploration with all three of these ideas, and I look forward to seeing all of them utilized in projects outside the design studio.

(Thanks to Thomas Rainwater for the tip about QuaDror and to Peter Doo for keeping me updated on Brickstainable).

The Robot A-Z

[Image: The yellow chipboards of the Fanuc global headquarters; courtesy of Fanuc].

On the flight back to Los Angeles yesterday I read about the corporate campus of Fanuc, “a secretive maker of robots and industrial automation gear,” according to Bloomberg Businessweek.

“Some 60 percent of the world’s precision machine tools use Fanuc’s controls,” the article explains, “which give lathes, grinders, and milling machines the agility to turn metal into just about any manufactured product.” As if suggesting a future art installation by Jeff Koons—sponsored by Boeing—we read about a man who uses “a milling machine with Fanuc controls to sculpt 747 parts.” (The company’s robot A-Z shows off their other goods).

[Image: Assembly robots by Fanuc].

But it’s the description of the firm’s actual facilities that caught my eye. “Fanuc‘s headquarters, a sprawling complex in a forest on the slopes of Mount Fuji, looks like something out of a sci-fi flick”:

Workers in yellow jumpsuits with badges on their shoulders trot among yellow buildings as yellow cars hum along pine-lined roads. Fanuc lore holds that the founder, Seiuemon Inaba, believed yellow “promotes clear thinking.”Inside the compound’s windowless factories, an army of (yes, yellow) robots works 24/7. “On a factory floor as big as a football field you might see four people. It’s basically just robots reproducing themselves.”

Thing is, if you want to see more—to see this strange origin-site for contemporary intelligent machines—you can’t. “Outsiders are rarely allowed inside the facility, and workers not engaged in research are barred from labs,” Businessweek adds. “‘I can’t even get in,’ quips a board member who asks that his name not be used.”

In a way, I’m reminded of South Korea’s plans for its own “Robot Land,” an “industrial city built specifically for the robotics industry,” that will have “all sorts of facilities for the research, development, and production of robots, as well as things like exhibition halls and even a stadium for robot-on-robot competitions.”

Here, though, alone amidst other versions of themselves in the pines of Mt. Fuji, “the world’s most reliable robots” take shape in secret, shelled in yellow, reproducing themselves, forming a robot city of their own.

Printheads in Space

[Image: The International Space Station, courtesy of NASA, via PopSci].

Space offers a quick look at the possibility that we might someday print space stations into existence in orbit.

A seemingly website-less company called Made in Space “wants to launch 3-D printers into orbit and use them to make parts for spacecraft and space stations, which would be assembled in zero gravity.” They would do this using “thin layers of ‘feedstock,’ which can be metal, plastic or a variety of other materials.” Even better, when parts break down, they’d simply be recycled back into future printed components: “Rather than shuttling a replacement part from Earth to a space station, 3-D printers aboard the station could simply crank out whatever’s needed. And the broken part could be recycled into feedstock.”

Of course, this is not entirely different from earlier visions of using radically exported 3-D printers to construct bases in situ on the moon’s dusty surface (using “lunar concrete“)—albeit, here, there is even less gravity to work with and a much more urgent need to plan for the availability of future construction material.

As it happens, a few years ago I was speaking with a concept artist who had worked on some of the earliest (and eventually unused) design proposals for Avatar; these included, he explained, plans for elaborate 3-D printers that would be used by the military in order to establish a rapid forward-operating base architecture on that alien world.

In a way, though, this is simply the microgravitational realization of BLDGBLOG’s earlier proposal for permanently installing 3-D printers inside perpetually incomplete works of architecture so that they can self-expand and internally reorganize over time.

[Image: Mars rover and its gadgets, courtesy of NASA].

This would seem to lead to the question of why 3-D printers, even absolutely tiny ones, aren’t already being included on Mars rover missions in order to test the validity of these architectural ideas; why pack only cameras and chemical sensors and their like on these offworld robots when you could add some kind of robust printhead assemblage? If you could put enough printheads on Mars, say, scattered around like totem poles, some of them could even be rented out as design studio equipment for experimental classes at Georgia Tech or the AA. What, then, would be the implications for the future of Mars archaeology, when the impulse toward heritage management will include artificial constructions on other worlds?

Having said all this, of course, architect Mark Hogan pointed out on Twitter this morning that “3d printing sounds so promising but the printed objects often still look like real-world low-res 3d bitmaps”—sobering, to be sure, but the idea of lo-fi, dot-matrix-quality space stations orbiting the planet, passing over continents and tropical island chains and glinting with distant starlight at 2 in the morning as insomniacs gaze up at the sky, actually seems even more endearing. And, I’ll admit, I have something of a mystical attachment to the possibilities of 3-D printing.

Fast, cheap, and out of control—and coming soon to a sky or offworld near you—these 3-D printers, like tubes of semi-sentient toothpaste, will extrude their low-res geometries, where 8-bit objects meet outsider art, as platforms for the future of human exoplanetary civilization.

(Via Popular Science).

Fabulous Fabbers

[Image: The circus tent of infinitely flexible, temporary production, from “Fabulous Fabbers” by David Benqué, produced in collaboration with 3D Mintegration].

Designer David Benqué‘s “Fabulous Fabbers” project asks what the world might look like if “new techniques to manufacture complex, miniaturised and integrated products, with cheaper and smaller infrastructure than the current silicon industry,” were to become much more widespread, infiltrating our cities, taking over streetscapes, and becoming ineradicable parts of our everyday lives.

[Image: “Fabulous Fabbers” by David Benqué on display at the Royal College of Art‘s EPSRC IMPACT! Exhibition, April 2010].

“The factories are coming to town!” Benqué writes, describing a reverse-migration of productive landscapes back into our homes and cities. Only these aren’t Pittsburghian Satanic mills of large-scale machinery and acre-size factory floors; they are temporary, tiny, and very highly mobile.

That is, Benqué continues, factories “are moving away from the unseen fringes, and into our cities”:

Advances in micro-scale engineering point to a global scale revolution where local, disposable factories produce hi tech goods at our very doorstep. What shapes might this new way of “making things” take within our urban landscape ? From garage-workshops to circus-like temporary structures, from street vendor stalls to vagabond encampments, this project explores the factories of the future and what our relationship to them might be, with the exciting prospect of taking back ownership over our production tools.

[Image: Rogue Factory from “Fabulous Fabbers” by David Benqué].

For instance, there is the Rogue Factory unit producing “custom high-tech goods”—but “what would the black market of ‘special orders’ look like?” Benque asks. This “black market of ‘special orders'” for things like 3D-printed human organs would also be something quite extraordinary to see, given another two decades’ time and cheap-enough bio-ink.

[Images: More view of “Fabulous Fabbers” by David Benqué].

Benqué’s big-top Mobile Manufacturing Unit, meanwhile, “tours the country, setting up in cities for a few months at a time. As the population welcomes a new source of goods, jobs and manufacturing techniques, it is celebrated as an event.”

[Image: Mobile Manufacturing Unit by David Benqué].

There are Self-Replicating Street Stalls and much more in this circusization of street capitalism, post-Fordist productivity fractalizing into every available spatial niche like economic caulk.

[Image: A Self-Replicating Street Stall by David Benqué].

In the process, it’s actually quite an interesting question: what architectural forms would flexible, micro-factory-based, socially temporary production really take? Or do the streetscapes of cities as diverse as Lagos and Hong Kong already provide us with an answer to that question?

A while back, we looked street-vendor rights in New York City, courtesy of designer Candy Chang—but what future rights and tools will we see when, say, mobile steel mills roll through the streets of Queens, counterfeit 3D-printing operations park themselves in basements on Canal, or desalination plants on wheels set up shop for three weeks on the SW corner of Nassau and Fulton? How will the 21st century western city be reshaped when it becomes part circus, part factory, part bazaar?