The Glacial Gothic, or the Cathedral as an “Avalanche on Pause”

[Image: Diagram from The Stones of Venice by John Ruskin.]

There are at least two interesting moments in John Ruskin’s book The Stones of Venice.

One is his description of buttresses.

Buttresses, Ruskin writes, are structures against pressure: a cathedral’s walls want to fall outward, for example, pushed aside by the relentless weight of the roof. But this gravitational pressure can be stabilized by an exoskeleton: a sequence of buttresses that will prevent those walls from collapsing outward.

However, Ruskin points out, there is a similar kind of pressure from the waves of the sea. Think of the curved hull of a ship, he writes, which is internally buttressed against the “crushing force” of the ocean around it. It is a kind of inside-out cathedral.

Consider other high-pressure environments where architecture can thrive—resting in the benthic abyss or twirling through the vacuum of outer space, where offworld stations rotate and spin through exotic gravitational scenarios—and you’ve perhaps envisioned what John Ruskin would be writing about today. Ship-buildings, buttressed against the void.

In any case, for Ruskin, buttresses perform a kind of gravitational judo: he describes “buttresses of peculiar forms, cunning buttresses, which do not attempt to sustain the weight, but parry it, and throw it off in directions clear of the wall.” They shed the load, so to speak, flipping it elsewhere, as if taking advantage of an opponent’s slow and graceless momentum.

…as science advances, the weight to be borne is designedly and decisively thrown upon certain points; the direction and degree of the forces which are then received are exactly calculated, and met by conducting buttresses of the smallest possible dimensions; themselves, in their turn, supported by vertical buttresses acting by weight, and these perhaps, in their turn, by another set of conducting buttresses: so that, in the best examples of such arrangements, the weight to be borne may be considered as the shock of an electric fluid, which, by a hundred different rods and channels, is divided and carried away into the ground.

It’s buttresses buttressing buttresses—or buttresses all the way down.

Ruskin reminds his readers, however, that a buttress’s function can even be seen outdoors, where he specifically cites Swiss landscape defenses. There, Ruskin writes, horizontal buttresses like defensive walls “are often built round churches, heading up hill, to divide and throw off the avalanches.” Again, it’s a question of parrying an oppositional force, deflecting it elsewhere.

[Image: “Profile of a buttress with vertical internal line, when the line of thrust coincides with the axis of the buttress,” taken from a paper called “Milankovitch’s Theorie der Druckkurven: Good mechanics for masonry architecture” by Federico Foce, in Nexus Network Journal.]

From an architectural point of view, you might say that a landscape is stationary until it buckles, shudders, or moves, becoming oceanic, heaving like the sea.

Or, to be pretentious and quote myself from an op-ed in the New York Times, “the ground itself is a kind of ocean in waiting. We might say that [the Earth] is a marine landscape, not a terrestrial one, a slow ocean buffeted by underground waves occasionally strong enough to flatten whole cities. We do not, in fact, live on solid ground: We are mariners, rolling on the peaks and troughs of a planet we’re still learning to navigate. This is both deeply vertiginous and oddly invigorating.”

For Ruskin, the buttress is an architectural technology—a spatial tool—that can be built to anticipate this act of marine transformation, a device that can prepare our buildings and cities to resist violent events in the landscape they are built upon.

With this in mind, it’s worth recalling a recent experiment that showed buildings can be partially shielded from the effects of earthquakes. An “invisibility cloak,” as researchers somewhat hyperbolically described it back in 2013, would use a “regular grid of cylindrical and empty boreholes” drilled into the earth to absorb and deflect seismic waves and thus protect certain structures from damage.

They would “parry it,” as Ruskin once wrote, “and throw it off in directions clear” of the city. In Ruskin’s terms, in other words, they would be buttresses: empty void-silos in the earth that nevertheless function like the exoskeletal cage of a cathedral or the internal ribs of a ship at sea.

[Image: Glacial logics diagrammed in The Stones of Venice by John Ruskin.]

The second interesting thing from The Stones of Venice—among many others, to be sure, but I will only focus on two here—is that, amazingly, for a book published back in 1853, Ruskin scales his analysis up to the point of suggesting that glaciers should be considered as complex architectural objects.

Ruskin describes “a curve about three quarters of a mile long,” for example, “formed by the surface of a small glacier of the second order.” This curve, he writes, is “the most beautiful simple curve I have ever seen in my life.” So, he wonders, how could it be applied to architecture? How could we learn from glaciers?

At this point, Ruskin draws a diagram—the one I’ve scanned, above—to highlight a variety of nested curves that he believes are hiding inside a particular glacier. These are organizational systems that extend for many miles at a time through the ice and that allegedly entail geometric lessons for architects.

The idea here—that Ruskin was trying to extract architectural lessons from glaciers nearly two centuries ago—is incredible to me.

After all, if the Gothic is an architectural language that, as writers such as Lars Spuybroek have compellingly shown, draws from the natural vocabulary of leaves, plants, tree roots, and so on, then this means that Ruskin is suggesting—in 1853!—a kind of Glacial Gothic, an architectural lesson drawn from continent-spanning masses of ice.

[Image: “A Crack in an Antarctic Ice Shelf Is 8 Miles From Creating an Iceberg the Size of Delaware”; image via Ohio State University.]

I’m reminded of an old t-shirt produced by the band Godflesh that described their music as an “Avalanche On Pause.”

This is a very Ruskinian description, we might say in the present context.

An avalanche on pause brings together Ruskin’s interests in landscape-scale structural events—such as glaciers and landslides—with his attention to the mechanics of cathedrals built to resist such imposing pressures. To freeze them in place. To press pause.

(Thanks to Marc Weidenbaum for reminding me of that Godflesh shirt many years ago.)

Quick Links

Some midweek reading material…

[Images: Muons beneath the Alps; via and via].

I’m pretty much obsessed with muons—subatomic particles that have been used to map the interiors of archaeological ruins—so I was interested to see that muons have now also been put to work mapping the bedrock beneath glaciers in the Swiss Alps. It is the “first application of the technique in glacial geology,” Eos reports. Even better, it uses underground railway infrastructure—the Jungfrau rail tunnel—as part of its experimental apparatus.

[Image: Mountain, written by Robert Macfarlane].

Robert Macfarlane has written a movie called Mountain, narrated by Willem Defoe. Macfarlane also recently joined Twitter, where he has rapidly accumulated nearly 28,000 followers.

The world’s sand is running out—indeed, “it’s scarcer than you think,” David Owen writes for The New Yorker. As highlighted on Twitter by @lowlowtide, the piece includes this great line: “The problems start when people begin to think of mutable landforms as permanent property.” Sand, and the peculiar economies that value it, has gotten quite a bit of attention over the past few years; among other coverage, a long feature in Wired two years ago is worth checking out.

Researchers at Penn State have figured out a way to generate electricity from the chemical mixing point where freshwater rivers reach the sea. “‘The goal of this technology is to generate electricity from where the rivers meet the ocean,’ said Christopher Gorski, assistant professor in environmental engineering at Penn State. ‘It’s based on the difference in the salt concentrations between the two water sources.’”

Hawaii is experiencing an unusually intense barrage of high tides, known as “king tides.” “For the people of Hawaii, alarm bells are ringing,” Adrienne LaFrance writes for The Atlantic. “King tides like this aren’t just a historic anomaly; they’re a sign of what’s to come… Scientists believe Hawaii could experience a sea-level increase of three feet by the year 2100, which is in line with global predictions of sea-level change and which would substantially reshape life on the Islands. That’s part of why scientists are enlisting volunteers to help photograph and describe incremental high tides across Hawaii.” Read more at The Atlantic.

[Image: Courtesy Places Journal/Zach Mortice].

Over at Places, landscape architect Zach Mortice takes a long look at what he calls “perpetual neglect” and the challenge of historic preservation in African-American burial grounds. Badly maintained—and, in some cases, almost entirely erased—black cemeteries reveal “that the racism and inequality that plague African Americans in life are perpetuated in death,” Mortice suggests. This is “nothing less than a preservation crisis for black burial grounds across the country.”

I recently discovered the existence of something called Betonamit. Betonamit is a “non-explosive cracking agent,” essentially a “non-toxic” powder that can be used for the slow-motion demolition of buildings and geological forms. “When mixed with water and poured into holes 1 1/4″, 1 3/8″ or 1 1/2″ diameter, it hardens and expands, exerting pressures of 12,000 psi. Reinforced concrete, boulders, and ledge[s] are fractured overnight with no noise, vibration, or flyrock.” I’m imagining a truck full of this stuff overturning on a crack-laden bridge somewhere, just an hour before a rainstorm begins, or a storage yard filled with crates of this stuff being ripped apart in the summer wind; a seemingly innocuous grey powder drifts out across an entire neighborhood for the next few hours, settling down into cracks on brick rooftops and stone facades, in sidewalks and roadbeds. Then the rains begin. The city crumbles. Weaponized demolition powder.

In any case, I actually stumbled upon Betonamit after reading a few blog posts on that company’s in-house blog. Atlas Preservation has a handful of interesting short articles up documenting their preservation work, including what might be the oldest gravestone in the United States and the challenges of open-air cemetery preservation. Let’s hope no one goes wandering amongst the tombs with a bucket of Betonamit…

The BBC went into horror-movie mode earlier this month, asking, “what would happen if we were suddenly exposed to deadly bacteria and viruses that have been absent for thousands of years, or that we have never met before? We may be about to find out. Climate change is melting permafrost soils that have been frozen for thousands of years, and as the soils melt they are releasing ancient viruses and bacteria that, having lain dormant, are springing back to life.” The headline is straight-forward enough, I suppose: “There are diseases hidden in ice, and they are waking up.”

[Images: Courtesy Waxwork Records].

Fans of John Carpenter’s (excellent) 1982 film The Thing might be interested to hear that the original score has been remastered and released on vinyl. The final product is visually gorgeous—and temporarily sold out. Keep your ears peeled for further pressings.

A retired F.B.I. investigator has newly dedicated himself to tracking down lost apple varietals of the Pacific Northwest. They are not extinct; they have simply disappeared into the background, both ecologically and historically. They are trees that have “faded into woods, or were absorbed by parks or other public lands,” but the apples that grow from them can still be enjoyed and cultivated.

If you are interested in apples and their history, meanwhile, don’t miss the late Roger Deakin’s superb book, Wildwood: A Journey Through Trees.

[Images: Courtesy Public Domain Review].

Blending into the natural landscape is the subject of a fascinating piece over at Public Domain Review about the early wildlife photographers, Richard and Cherry Kearton. In order not to scare away their subject matter, the Keartons constructed artificial trees, put on short, deliberately misleading performative displays for wildlife, and carved masks that would help camouflage them against the woodlands.

There’s more—always more!—to link to and read, but I’ll leave it at that. For other, ongoing links, I am also on Twitter.

The Labyrinth of Night, The Polar Gothic, and a Golden Age for Landscape Studies

It’s hard to resist a place called the Noctis Labyrinthus, or “the Labyrinth of Night,” especially when it’s on Mars.

NoctisLabyrinthus[Image: Courtesy ESA/DLR/FU Berlin].

“This block of martian terrain, etched with an intricate pattern of landslides and wind-blown dunes, is a small segment of a vast labyrinth of valleys, fractures and plateaus,” the European Space Agency reported earlier this week.

“As the crust bulged in the Tharsis province it stretched apart the surrounding terrain, ripping fractures several kilometres deep and leaving blocks—graben—stranded within the resulting trenches,” the ESA adds. “The entire network of graben and fractures spans some 1200 km, about the equivalent length of the river Rhine from the Alps to the North Sea.”

In other words, it’s an absolutely massive expanse of desert canyons and landslides, stretching roughly the distance from Switzerland to Rotterdam—a “700-mile labyrinth of fractures and landslides,” in the words of the reliably interesting Corey Powell on Twitter.

Imagine hiking there.

NoctisLabyrinthusAerial[Image: Courtesy ESA/DLR/FU Berlin].

We are living in something of a golden age for landscape studies. Over a remarkably short span of time, for example, we’ve learned that there are sinkholes on comets—that is, that comets have undergrounds. They have pores, caves, and tunnels, with sinkholes explosively airing this subterranean world into outer space. These “mysterious, steep-sided pits—one up to 600 feet wide and 600 feet deep,” as National Geographic described them, indicate that “there must be gaps inside.” Picture caves and tunnels evaporating in the darkness, before collapsing in on themselves in a crystalline flash.

Meanwhile, I have always loved the fact that there is a mountain range on Mars named after dead American astronauts, as if the Red Planet is somehow haunted in advance of human arrival by the mythological figures of explorers who never made it there. But this is just one small example of how a radically unfamiliar environment can gradually become known through the process of naming.

2016-01-01 22.59.25[Image: From India’s Mars Orbiter, via @coreyspowell].

My wife, Nicola Twilley, was actually at the Johns Hopkins Applied Physics Laboratory for the recent Pluto flyby, covering it for The New Yorker; she wrote a great description of how the former planet became a true landscape:

As the scientists traced tendrils of reddish brown and speculated as to the rate of melt at the edge of a two-toned ice patch near Pluto’s equator, the impossibly distant world came to life. Fed up with referring to features as, for instance, “the black circle at two o’clock” and “the big white patch,” the team had started to give them names—first nicknames, such as “the heart” and “the whale,” and then unofficial but more formal names drawn from the mythology of the underworld. The whale became Lovecraft’s Cthulhu, and a nearby dark smudge was christened Balrog, after the demons of Tolkien’s Middle-earth. An alien landscape had started to become a collection of places: knowable, if not yet known.

Interestingly, it seems that names come first, algorithms later.

In any case, while naming, of course, lends an air of familiarity to alien terrains—or knowability, we might say—the utterly bonkers nature of these landscapes remains extraordinary.

Nicky later revisited the subject, for example, writing that “the reddish patches” seen on Pluto might actually be “the organic material nicknamed ‘star tar,’ a precursor to life”—sludge awaiting sentience—and that “cryovolcanoes—volcanoes that spew slushy methane and nitrogen ice rather than molten rock,” might exist at the planet’s south pole.

There, this slow-moving matrix of frozen elements would circulate amongst other “exotic ices” in the distant cold, surely another kind of “labyrinth of night,” if there ever was one.

Think of what writer Victoria Nelson has called the “polar Gothic,” referring to an era of science-fictional representations of the Earth’s own polar regions as places of psychological menace and theological mystery; now picture weird slurries of nitrogen and star-tar sinkholes in a region named after Cthulhu, and it seems that perhaps the great age of landscape exploration has only now truly begun.

Consider, for example, this tweet by Rob Minchin, referring to the latest geological revelations coming from Pluto, a world of nitrogen glaciers and ice tectonics. “Water ice floats on nitrogen or CO ice,” he explains. This means, unbelievably, that “numerous mountains on Pluto appear to be floating.”

pluto[Image: Pluto, via @CoreySPowell].

Even within our own solar system, it seems, if you have an idea for a landscape so unreal it borders on pure fantasy, there is a planet, comet, or asteroid already exceeding it.

(In addition to @CoreySPowell, another good Twitter account for offworld landscape studies is @LoriKFenton, as the images seen at the link make clear).

“We don’t have an algorithm for this”

[Image: Comet 67P, via ESA].

In the story of how European Space Agency researchers are scrambling to locate—and possibly move—the Philae probe, which they successfully landed on Comet 67P two days ago, there’s an interesting comment about computer vision and the perception of exotic landscapes.

[Image: Comet 67P, via New Scientist].

“We’re working our eyes off,” one of the scientists says to New Scientist, describing how they are personally and individually poring over photographs of the comet.

“It’s an entirely manual process,” New Scientist continues, “because the complex and bizarre landscape of comet 67P defies any kind of automated search. ‘We don’t have an algorithm for this,’ he says.”

We don’t have an algorithm for this.

[Image: The irregular terrain of Comet 67P, via ESA].

It would be interesting to develop a taxonomy of landscapes based on their recognizability to algorithms. This would tell you as much about how computers see the world as it would about the aesthetic assumptions—even the geological biases—of the people who programmed those computers.

Think, for example, of Adam Harvey’s work, asking When Is An Apple No Longer An Apple? That project explored the point at which machine-learning algorithms could no longer distinguish the iconic fruit from a jumble of colorful objects.

Or take Harvey’s more recent CV Dazzle experiment, which looked at how to prevent facial recognition software from identifying a face at all through the clever use of cosmetic camouflage.

However, in the case of Comet 67P and other extreme topographic environments, we would be looking at when a landscape is no longer a landscape, so to speak, at least in terms of the computer-vision algorithms programmed to analyze it.

[Image: Comet 67P, via ESA].

What other landscapes fall within this category—of spatial environments unrecognizable to machines—and what do those spaces reveal about the dimensional prejudices of the algorithm? Light and shadow; depth and range; foreground and background; geometry and complexity.

Bump Adam Harvey’s investigations up to the scale of a landscape, and a million potential design projects beckon. Learning from Comet 67P.

(Earlier on BLDGBLOG: The Comet as Landscape Art).

The Comet as Landscape Art

[Image: Photo courtesy ESA].

Intrigued by these images as an example of how the tradition of landscape representation has rapidly progressed—from the Romantics and the Hudson River School to Rosetta—I felt compelled to post a few photos of the craggy and glacial surface of Comet 67P/Churyumov–Gerasimenko, sent back to Earth yesterday from the European Space Agency’s Rosetta spacecraft.

The surface of the comet “is porous, with steep cliffs and house-sized boulders,” making it earth-like yet deeply treacherous, an irregular terrain to photograph and a dangerous place to land.

[Image: Photo courtesy ESA].

It is the notion of “land” here that is most interesting, however, as this is really just the imposition of a terrestrial metaphor onto a deeply alien body. Yet the comet is, in effect, literally a glacier: a malleable yet permanently frozen body of ice hurtling through space, occasionally exploding in comas and tails of vapor.

It is “an ancient landscape,” we read, “and yet one that looks strangely contemporary as the sun vaporizes ice, reworking the terrain like a child molding clay.”

Think Antarctica in a winter storm, not southern Utah—or Glacier National Park, not the Grand Canyon.

[Image: Photo courtesy ESA].

Along those lines, some of the most provocative writing on what it means to visually represent the frozen and hostile landscapes of the Antarctic is by writer William L. Fox, whose work offers some useful resonance here.

Fox has written, for example, about the technical and even neurological difficulties in accurately representing—let alone comprehending or simply navigating—Antarctic space and the vast forms that frame it.

Distant landscapes distorted by thermal discontinuities; white levels pushed to the absolute limit of film chemistry; impossible contours throwing off any attempt at depth perception; even the difficulty of distinguishing complicated mirages from actual landforms: these are all part of the challenge of creating images of an exotic landscape such as the Antarctic.

As Fox writes, it was even specifically the tradition of Dutch landscape painting, combined with the maritime practice of sketching coastal profiles, that first introduced the visual world of the Antarctic to western viewers: it was thus seen as an ominous, ice-clogged horizon of fog and low clouds looming always just slightly out of ship’s reach at the bottom of the world.

He calls this the genre of “representational exploration art.”

[Image: Photo by Stuart Klipper from his fantastic book, The Antarctic: From the Circle to the Pole, with a foreword by William L. Fox].

In one interesting passage in his book Terra Antarctica, he suggests that the south polar landscape is so extreme, it often resists natural analogy. As Fox describes it, the wind-carved boulders and isolated pillars and cliffs of ice are more like “artworks by Salvador Dalí and Henry Moore, evoking the spirit of surrealism with the former and modernist forms with the latter. The Antarctic is so extreme to our visual expectations that, once we attempt to move beyond measurement to describe it, analogies with other parts of nature fall short, and we resort to comparisons with cultural artifacts that push at the boundaries of our perceptions.”

These include “cultural artifacts such as sculpture and architecture, products more of the imagination than of nature.”

Consider, for instance, that comet 67P is widely known today as the “rubber-duck comet” due to its bifurcated structure, implying, as Fox suggests with the Antarctic, that no natural analogy seemed adequate for describing the comet’s geometry.

[Image: The gateway arches of the Antarctic; photo by Stuart Klipper from, The Antarctic: From the Circle to the Pole, foreword by William L. Fox].

But what are we to make of comet 67P now that we can see it as a physical landscape, not just an ephemeral optical phenomenon passing, at great distance, through the sky? When a blur becomes focused as terrain, what is the best way to describe it? What visual or textual traditions are the most useful or evocative—vedas and sutras or laboratory reports?

Put another way, is poetry as appropriate as a scientific survey in such a circumstance—should “we attempt to move beyond measurement to describe it,” in Fox’s words—and, if not, what new genres of exploration art might result from this spatial encounter?

I’m reminded here of poet Christian Bök’s wry remark on Twitter: “I am still amazed that poets insist on writing about their divorces, when robots are taking pictures of orange, ethane lakes on Titan…”

Now that humans are beginning to land semi-autonomous camera-ships on the frozen ice fields of passing comets, sending back the (off)world’s strangest landscape art—as if a direct line runs from, say, the pastoral landscapes of Claude Lorrain or the elemental weirdness of J.M.W. Turner to the literally extraterrestrial boulders and gullies depicted by Rosetta—how should our own descriptive traditions adapt? What, we might ask, is comet 67P’s role in art history?

[Image: Approaching 67P, via the ESA].

Where Borders Melt

[Image: From Italian Limes. Photo by Delfino Sisto Legnani, courtesy of Folder].

One of the most interesting sites from a course I taught several years ago at Columbia—Glacier, Island, Storm—was the glacial border between Italy and Switzerland.

The border there is not, in fact, permanently determined, as it actually shifts back and forth according to the height of the glaciers.

This not only means that parts of the landscape there have shifted between nations without ever really going anywhere—a kind of ghost dance of the nation-states—but also that climate change will have a very literal effect on the size and shape of both countries.

[Image: Due to glacial melt, Switzerland has actually grown in size since 1940; courtesy swisstopo].

This could result in the absurd scenario of Switzerland, for example, using its famed glacier blankets, attempting to preserve glacial mass (and thus sovereign territory), or it might even mean designing and cultivating artificial glaciers as a means of aggressively expanding national territory.

As student Marissa Looby interpreted the brief, there would be small watchtowers constructed in the Alps to act as temporary residential structures for border scientists and their surveying machines, and to function as actual physical marking systems visible for miles in the mountains, somewhere between architectural measuring stick for glacial growth and modular micro-housing.

But the very idea that a form of thermal warfare might break out between two countries—with Switzerland and Italy competitively growing and preserving glaciers under military escort high in the Alps—is a compelling (if not altogether likely) thing to consider. Similarly, the notion that techniques borrowed from landscape and architectural design could be used to actually make countries bigger—eg. through the construction of glacier-maintenance structures, ice-growing farms, or the formatting of the landscape to store seasonal accumulations of snow more effectively—is absolutely fascinating.

[Images: From Italian Limes. Photos by Delfino Sisto Legnani, courtesy of Folder].

I was thus interested to read about a conceptually similar but otherwise unrelated new project, a small exhibition on display at this year’s Venice Biennale called—in English, somewhat unfortunately—Italian Limes, where “Limes” is actually Latin for limits or borders (not English for a small acidic fruit). Italian Limes explores “the most remote Alpine regions, where Italy’s northern frontier drifts with glaciers.”

In effect, this is simply a project looking at this moving border region in the Alps from the standpoint of Italy.

[Image: From Italian Limes. Photo by Delfino Sisto Legnani, courtesy of Folder].

As the project description explains, “Italy is one of the rare continental countries whose entire confines are defined by precise natural borders. Mountain passes, peaks, valleys and promontories have been marked, altered, and colonized by peculiar systems of control that played a fundamental role in the definition of the modern sovereign state.”

[Images: From Italian Limes. Photos by Delfino Sisto Legnani, courtesy of Folder].

However, they add, between 2008 and 2009, Italy negotiated “a new definition of the frontiers with Austria, France and Switzerland.”

Due to global warming and and shrinking Alpine glaciers, the watershed—which determines large stretches of the borders between these countries—has shifted consistently. A new concept of movable border has thus been introduced into national legislation, recognizing the volatility of any watershed geography through regular alterations of the physical benchmarks that determine the exact frontier.

[Images: From Italian Limes. Photos by Delfino Sisto Legnani, courtesy of Folder].

The actual project that resulted from this falls somewhere between landscape surveying and technical invention—and is a pretty awesome example of where territorial management, technological databases, and national archives all intersect:

On May 4th, 2014, the Italian Limes team installed a network of solar-powered GPS units on the surface of the Similaun glacier, following a 1-km-long section of the border between Italy and Austria, in order to monitor the movements of the ice sheet throughout the duration of the exhibition at the Corderie dell’Arsenale. The geographic coordinates collected by the sensors are broadcasted and stored every hour on a remote server via a satellite connection. An automated drawing machine—controlled by an Arduino board and programmed with Processing—has been specifically designed to translated the coordinates received from the sensors into a real-time representation of the shifts in the border. The drawing machine operates automatically and can be activated on request by every visitor, who can collect a customized and unique map of the border between Italy and Austria, produced on the exact moment of his [or her] visit to the exhibition.

The drawing machine, together with the altered maps and images it produces, are thus meant to reveal “how the Alps have been a constant laboratory for technological experimentation, and how the border is a compex system in evolution, whose physical manifestation coincides with the terms of its representation.”

The digital broadcast stations mounted along the border region are not entirely unlike Switzerland’s own topographic markers, over 7,000 “small historical monuments” that mark the edge of the country’s own legal districts, and also comparable to the pillars or obelisks that mark parts of the U.S./Mexico border. Which is not surprising: mapping and measuring border is always a tricky thing, and leaving physical objects behind to mark the route is simply one of the most obvious techniques.

As the next sequence of images shows, these antenna-like sentinels stand alone in the middle of vast ice fields, silently recording the size and shape of a nation.

[Images: From Italian Limes. Photos by Delfino Sisto Legnani, courtesy of Folder].

The project, including topographic models, photographs, and examples of the drawing machine network, will be on display in the Italian Pavilion of the Venice Biennale until November 23, 2014. Check out their website for more.

Meanwhile, the research and writing that went into Glacier, Island, Storm remains both interesting and relevant today, if you’re looking for something to click through. Start here, here, or even here.

[Image: From Italian Limes. Photo by Delfino Sisto Legnani, courtesy of Folder].

Italian Limes is a project by Folder (Marco Ferrari, Elisa Pasqual) with Pietro Leoni (interaction design), Delfino Sisto Legnani (photography), Dawid Górny, Alex Rothera, Angelo Semeraro (projection mapping), Claudia Mainardi, Alessandro Mason (team).

Offworld Glaciology

[Image: Photo by Gerco de Ruijter, via but does it float].

A short article by Sam Kean for the Chemical Heritage Foundation in Philadelphia explores the world of “bizarro ice—ice that burns, ice that sinks instead of floating, ice literally out of this world.” For the most part, these are ices that have formed under extraordinary pressure, whether naturally or artificially applied, which “forc[es] H2O molecules into rhombuses, tetragons, and other alternative geometries.”

In some cases, the pressure is so great that the resulting ice “can stay solid at temperatures of thousands of degrees—a true freezer burn. If you could somehow plop chunks of these ices into a glass of liquid water, they’d vaporize it.” Incredibly, we read that, “at super-high pressures, some chemists predict that ice transforms into a metal.”

There is an ice “that’s structurally similar to diamonds,” Kean explains, that “probably exists in the upper atmosphere.” And there are exotic ices on other planets: “The dense, hot interiors of Neptune and Uranus probably contain chunks of nonhexagonal ices, as do exoplanets around distant stars, a potentially important consideration as we search for life beyond our solar system.”

[Image: The Sea of Ice by Caspar David Friedrich].

This latter remark brings to mind a book I downloaded in my recent PDF binge called The Science of Solar System Ices, edited by Murthy S. Gudipati and Julie Castillo-Rogez. It’s a mammoth book—more than 650 pages—that explores exotic ices found in comets, on exoplanets, on moons, and elsewhere in our solar system.

“The largest deposits of carbon dioxide ice,” we learn, “is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene and many tentative or inferred compounds,” including a long list of chemicals I can’t even pronounce let alone recognize or describe, forming ices with “unusual colors and spectral shapes.” There are even “organic” ices made of hydrocarbons.

[Image: The Monk by the Sea by Caspar David Friedrich].

How these ices produce landscapes is by far the most interesting aspect here, at least from the point of view of BLDGBLOG: how they glaciate, experience gravitational tides and weathering, melt from below due to volcanoes, reflect the alien skies shining down on them in distorted shapes and angled echoes, and even how they tectonically fracture into karst-like networks of sinkholes and caves.

Imagining snow storms of frozen methane on other planets while thinking about, for example, human artistic traditions of landscape representation, from the Hudson Valley School to Caspar David Friedrich—picturing massive and extraordinary widescreen scenes of glacial hills and valleys steaming in the outer darkness of the solar system and the paintings or photographs or even animated GIFs that might result—would extend the idea of the sublime to non-terrestrial landscapes and the sights they might someday reveal to human explorers.

[Image: Walking into a glacier: “Grindelwald Grotto, Bernese Oberland, Switzerland,” courtesy of the Library of Congress Prints & Photographs Division].

Art historians would gaze in awe at offworld glaciers of carbon dioxide ice and howling massifs of frozen nitrogen, where volcanoes erupt not with liquid rock but with “ice slurries” and groundwater exploding onto the landscape with the force of a Kilauea.

Perhaps someday you’ll be able to get a degree in the field of exploratory xenoglaciology, the study of rare and incredible landforms made of frozen chemicals in space.

(“Wild Ice” story spotted via @nicolatwilley).

Mountain View

[Image: Courtesy of the U.S. Library of Congress Prints & Photographs Division].

After posting several of these images in our recent Venue interview with outdoor equipment strategist Scott McGuire—easily one of my favorite interviews of late, touching on everything from civilianized military gear used in everyday hiking to REI-augmented wilderness camp sites as the true heirs of Archigram—I was so taken by their weirdly haunting views of humans wandering through extreme landscapes, dressed in 19th-century suits and top hats, carrying canes, that I thought I’d post a larger selection.

[Images: Courtesy of the U.S. Library of Congress Prints & Photographs Division].

Middle class gentlemen and ladies in hooped skirts walk into ice caves and step gingerly across the cracked, abyssal surfaces of old mountain glaciers, pointing up at things they don’t understand.

[Image: Courtesy of the U.S. Library of Congress Prints & Photographs Division].

At times, these feel almost like photos from some as-yet-unwritten Gothic horror story, perhaps a 19th-century Swiss prequel to John Carpenter’s The Thing, in which purely accidental sequences of photos—

[Images: Courtesy of the U.S. Library of Congress Prints & Photographs Division].

—imply a narrative of genial discovery, focused exploration, and eventual solo flight down the mountainside in terror.

In fact, I could easily imagine an Alpine variation on Michelle Paver’s memorably unsettling Arctic ghost novel Dark Matter set in such geologically extravagant landscapes, as humans struggle to survive, both physically and psychologically, in this encounter with an incomprehensibly over-sized landscape millions of years older than they might ever be, naively setting up camp amidst a wilderness that does not want them there.

[Images: Courtesy of the U.S. Library of Congress Prints & Photographs Division].

But then, at other times, these photos are almost like exaggerated set pieces by artists Kahn & Selesnick, whose work proposes fictional expeditions to otherworldly landscapes, missions to the moon, ancient salt cities, and more, all told through an almost unbelievably elaborate series of props, fake postcards, paintings, photographs, and more.

Like some unrealized backstory for their “Eisbergfreistadt” project, for example, or their “Circular River” expedition, men in wool vests pull one another up abstract glacial forms, as an incredible wooden staircase—if you look closely at the next image—races up the mountainside in the middle of nowhere.

[Image: Courtesy of the U.S. Library of Congress Prints & Photographs Division].

After a point, these scenes are Chaplinesque and ridiculous, like turn-of-the-century bankers who got lost on a glacier in a Modernist play.

[Image: Courtesy of the U.S. Library of Congress Prints & Photographs Division].

In any case, these all come courtesy of the U.S. Library of Congress Prints & Photographs Division, where substantially higher-res versions of each photo are available; but don’t miss the additional photos in the interview with Scott McGuire over at Venue.

[Images: Courtesy of the U.S. Library of Congress Prints & Photographs Division].

Project Iceworm

[Image: Camp Century under construction; photograph via Frank J. Leskovitz].

Camp Century—aka “Project Iceworm”—was a “city under ice,” according to the U.S. Army, a “nuclear-powered research center built by the Army Corps of Engineers under the icy surface of Greenland,” as Frank J. Leskovitz explains.

A fully-functioning underground city, Camp Century even had its own mobile nuclear reactor—an “Alco PM-2A”—that kept the whole thing lit up and running during the Cold War.

[Images: Camp Century under construction; photographs via Frank J. Leskovitz].

According to Leskovitz, the Camp’s construction crews “utilized a ‘cut-and-cover’ trenching technique” during the base’s infra-glacial assembly:

Long ice trenches were created by Swiss made “Peter Plows,” which were giant rotary snow milling machines. The machine’s two operators could move up to 1200 cubic yards of snow per hour. The longest of the twenty-one trenches was known as “Main Street.” It was over 1100 feet long and 26 feet wide and 28 feet high. The trenches were covered with arched corrugated steel roofs which were then buried with snow.

Prefab facilities were then added, with “wood work buildings and living quarters… erected in the resulting snow tunnels.”

[Images: Camp Century under construction; photographs via Frank J. Leskovitz].

Leskowitz continues:

Each seventy-six foot long electrically heated barrack contained a common area and five 156 square foot rooms. Several feet of airspace was maintained around each building to minimize melting. To further reduce heat build-up, fourteen inch diameter “air wells” were dug forty feet down into the tunnel floors to introduce cooler air. Nearly constant trimming of the tunnel walls and roofs was found to be necessary to combat snow deformation.

Camp Century went from a scientific outpost to a potential U.S. Army site for hosting battle-ready nuclear missiles underneath the Greenland ice sheet—the so-called “Project Iceworm” mentioned earlier.

The following four short videos, produced by the U.S. military, explore the site’s strange technical circumstances as well as its complicated defensive history.





“During this period of the Cold War,” Leskovitz explains, “the U.S. Army was working on plans to base newly designed ‘Iceman’ ICBM missiles in a massive network of tunnels dug into the Greenland icecap. The Iceworm plans were eventually deemed impractical and abandoned,” and, “due to unanticipated movement of the glacial ice,” the entire subterranean complex was eventually left in ruins.

The idea that the moving terrain of a glacial ice sheet could be considered a stable-enough launching point for nuclear missiles is astonishing, and the idea that the U.S. Army once ran a top secret—and rather Metallica-sounding—”city under ice” just shy of the North Pole only adds to the story’s disarming surreality.

[Image: The plan of Camp Century; via Frank J. Leskovitz].

In any case, more photographs, including of the Army’s mobile nuclear reactor, are available on Leskovitz’s own site.

*Update* In August 2016, a study published in the journal Geophysical Research Letters suggested that “climate change could remobilize abandoned hazardous waste thought to be buried forever beneath the Greenland Ice Sheet,” specifically referring to the ruins of Camp Century.

“Camp Century could start to melt by the end of the century,” the American Geophysical Union summarizes. “If the ice melts, the camp’s infrastructure, as well as any remaining biological, chemical and radioactive waste, could re-enter the environment and potentially disrupt nearby ecosystems.”

[Image: U.S. Army photograph, via the American Geophysical Union].

Here is a PDF of the complete paper.

On the art of drinking ice cores

[Image: From the 2006-2007 U.S. ITASE expedition to Antarctica].

Edible Geography has a fun interview up this morning with glacial scientist Paul Mayewski, director of the Climate Change Institute at the University of Maine. The interview is remarkable not only for its descriptions of the technicality of drilling, shipping, preserving, and studying ancient ice cores removed from landscapes as far afield as Greenland and Tibet, but also for Mayewski’s confession that unneeded ice cores are sometimes melted down and drunk by the scientists.

[Image: From the 2006-2007 U.S. ITASE expedition to Antarctica].

“But, you know,” he clarifies, “it’s not as if we have a lot of ice lying around and we drink the water on a regular basis. We are pretty careful to restrict it to pieces that we know we don’t need for any measurements, and that come from places where they could be repeated if need be. We have to be sure that they’re not valuable to anybody. And we only use them for special events—we don’t drink it very often.”

[Images: From the 2006-2007 U.S. ITASE expedition to Antarctica].

These special events include wedding receptions, where shavings of ancient ice, dropped into water, bubble and pop like champagne, Mayewski explains:

Probably the most exciting thing about it is when you have real ice—that’s where the snow has been gradually compacted and eventually formed into ice, and the density has increased. When that happens, if the ice is old, it will often trap air bubbles in it. Those air bubbles can contain carbon dioxide from ten thousand years ago or even a hundred thousand years ago. And when you put an ice cube of that ice in a glass of water, it pops. It has natural effervescence as those gas bubbles escape. You get a little a puff of air into your nostrils if you have your nose over the glass. It’s not as though it necessarily smells like anything—but when you think about the fact that the last time that anything smelled that air was a hundred thousand years ago, that’s pretty interesting.

Atmospheres trapped for a half-a-million years suddenly freed, as wedding guests inhale these vaporous paleoarchives.

[Image: From the 2006-2007 U.S. ITASE expedition to Antarctica].

The whole interview, though long, is a quick and good-spirited read.

Glacier / Island / Storm Online

[Image: From Modern Mechanix, thanks to a tip from Nicole Seekely].

For the next five days, if everything goes as planned, BLDGBLOG and eight other architecture, design, and technology blogs will be engaged in a series of linked posts and ongoing conversations about themes relevant to the “Glacier/Island/Storm” studio at Columbia University this Spring.

In the broadest terms, we will be exploring the architecture of large-scale natural processes; more specifically, this means studying artificial glaciers; organically-grown archipelagos and other artificial reef technologies; and the unintended climatic side-effects of architecture, including the possibility of “owning the weather.”

[Image: From Modern Mechanix].

The participating blogs are a456 (Enrique Ramirez), Edible Geography (Nicola Twilley), HTC Experiments (David Gissen), InfraNet Lab (Mason White, Maya Przybylski, Neeraj Bhatia, and Lola Sheppard), mammoth (Rob Holmes and Stephen Becker), Serial Consign (Greg J. Smith), Soundscrapers/UC-Berkeley Archinect School Blog Project (Nick Sowers), and Quiet Babylon (Tim Maly).

For my own part, I’ll be posting on a wide range of themes directly related to the studio, including summaries of visiting expert lectures and class field trips to local scientific institutions; but I will also be offering my own speculative thoughts on the matter. Also, in addition to each blogger commenting on one another’s posts when possible, or simply following up with their own response-posts, I will be maintaining a list of relevant links to keep the whole thing flowing.

So my students and I are off on a field trip for the rest of the day, but I will begin putting up posts this evening. Feel free to join in, leave comments, suggest further readings, and more. Thanks!