Terrestrial Astronomy

[Image: “The Empty Quarter (Nevada)” (2021), collage by Geoff Manaugh, using maps from the U.S. Geological Survey.]

I’m thrilled to have some map collages in the latest issue of the Yale Review.

[Image: “Groundwater Grids (North Dakota)” (2020), collage by Geoff Manaugh, using maps from the U.S. Geological Survey.]

I started making these during lockdown, as part of a larger (and, to be honest, now doomed-feeling) graphic novel project using public domain U.S. Geological Survey maps as the main material.

[Images: “Keys II (Florida)” (2020) and “Keys I (Florida)” (2020), collages by Geoff Manaugh, using maps from the U.S. Geological Survey; the source maps for these are particularly interesting, because they utilize satellite photography.]

The images in this post include a few collages not published in the Yale Review, but click through for the full issue’s broad selection of poetry, essays, fiction, and more.

[Images: “Morse Landscape II (Louisiana)” and “Morse Landscape I (Louisiana)” (2021), collages by Geoff Manaugh, using maps from the U.S. Geological Survey.]

And huge, huge thanks to Eugenia Bell for the editorial interest!

[Images: Various collages by Geoff Manaugh, using maps from the U.S. Geological Survey.]

If you’re looking for someone to design a book cover or album cover or event poster, hit me up.

[Image: “Terrestrial Astronomy (Nevada)” (2021), collage by Geoff Manaugh, using maps from the U.S. Geological Survey; it’s a pedestrian observation, but inverting the color scheme of geological maps makes them look like maps of stars.]

Underground Cathedrals of Radiation and Zones of Irreversible Strain

[Image: Nevada test site, Google Maps, filtered through Instagram.]

There’s a great line in Tom Zoellner’s book Uranium: War, Energy, and the Rock That Shaped the World where he describes the after-effects of underground nuclear tests. Zoellner writes that, during these tests, “a nuclear bomb buried in a deep shaft underneath a mountain would vaporize the surrounding rock and make a huge cathedral-like space inside the earth, ablaze with radioactivity.”

I thought of Zoellner’s vision of a “huge cathedral-like space inside the earth” recently while reading a paper by Colin N. Waters et al., called “Recognising anthropogenic modification of the subsurface in the geological record.” Among other things, the authors describe the long-term “structural effects of subsurface weapon detonations.”

[Image: Nevada test site, Google Maps, filtered through Instagram.]

They suggest that these detonations produce spaces—such as collapse cones and debris fields—that have “no direct natural analogue,” although they do helpfully contrast weapon-test craters with meteor-impact sites. (The authors also break underground nuclear test sites down into “zones,” which include a “zone of irreversible strain,” which is an amazing phrase.)

The larger purpose of their paper, though, is to look at long-term “signatures” that humans might leave behind in our underground activity, from nuclear tests to mineralogical carbon-capture to deep boreholes to coal mines. Will these signatures still be legible or detectible for humans of the far future? On the whole, their conclusion is not optimistic, suggesting instead that even vast subterranean mines and sites of underground nuclear weapons tests will fade from the terrestrial archive.

“Many of the physical and chemical products of human subsurface intrusion either do not extend far from the source of intrusion, lack long-term persistence as a signal or are not sufficiently distinctive from the products of natural processes to make them uniquely recognisable as of anthropogenic origin,” they write. “But the scope and complexity of the signals have increased greatly over recent decades, both in areal extent and with increasing depths, and seem set to be a fundamental component of our technological expansion. There will be some clues to the geologist of the far-future, when historical knowledge records may not be preserved, that will help resolve the origin.”

[Image: Nevada test site craters, courtesy of the National Nuclear Security Administration Nevada Site Office Photo Library.]

Nevertheless, it is totally fascinating to imagine what future archaeologists might make of Zoellner’s “huge cathedral-like space[s] inside the earth, ablaze with radioactivity,” long after they’ve collapsed, and where sand has been fused into unnatural glass and anomalous traces of radiation can still be found with no reasonable explanation for how they got there.

Could future archaeologists deduce the existence of nuclear weapons from such a landscape? And, if so, would such a suggestion—ancient weapons modeled on the physics of stars—sound rational or vaguely insane?

(Vaguely related: “fossil reactors” underground in Gabon.)

Walker Lane Redux

It’s been an interesting few days here in Southern California, with several large earthquakes and an ensuing aftershock sequence out in the desert near Ridgecrest. Ridgecrest, of course, is at the very southern edge of the Walker Lane—more properly part of the Eastern California Shear Zone—a region of the country that runs broadly northwest along the California/Nevada state border that I covered at length for the May 2019 issue of Wired.

[Image: My own loose sketch of the Walker Lane, using Google Maps].

To make a story short, a handful of geologists have speculated, at least since the late 1980s, that the San Andreas Fault could actually be dying out over time—that the San Andreas is jammed up in a place called the “Big Bend,” near the town of Frazier Park, and that it is thus losing its capacity for large earthquakes.

As a result, all of that unreleased seismic strain has to go somewhere, and there is growing evidence—paleoseismic data, LiDAR surveys, GPS geodesy—that the pent-up strain has been migrating deep inland, looking for a new place to break.

That new route—bypassing the San Andreas Fault altogether—is the Walker Lane (and its southern continuation into the Mojave Desert, known as the Eastern California Shear Zone).

What this might mean—and one of the reasons I’m so fascinated by this idea—is that a new continental margin could be forming in the Eastern Sierra, near the California/Nevada state border, a future line of breakage between the Pacific and North American tectonic plates.

If this is true, the Pacific Ocean will someday flood north from the Gulf of California all the way past Reno—but, importantly, this will happen over the course of many millions of years (not due to one catastrophic earthquake). This means that no humans alive today—in fact, I would guess, no humans at all—will see the final result. If human civilization as we know it is roughly 15,000 years old, then civilization could rise and fall nearly 700 times before we even get to 10 million years, let alone 15 million or 20.

In any case, these recent big quakes out near Ridgecrest do not require that the most extreme Walker Lane scenario be true—that is, they do not require that the Walker Lane is an incipient continental margin. However, they do offer compelling and timely evidence that the Walker Lane region is, at the very least, more seismically active than its residents might want to believe.

I could go on at great length about all this, but, instead, I just want to point out one cool thing: the far northern route of the Walker Lane remains something of a mystery. If you’ve read the Wired piece, you’ll know that, for the Walker Lane to become a future continental edge, it must eventually rip back through California and southeastern Oregon to reach the sea. However, the route it might take—basically, from Pyramid Lake to the Pacific—is unclear, to say the least.

One place that came up several times while I was researching my Wired article was the northern California town of Susanville. Susanville is apparently a promising place for study, as geologists might find emergent faults there that could reveal the future path of the Walker Lane.

If you draw a straight line from the Reno/Pyramid Lake region through Susanville and keep going, you’ll soon hit a town called Fall River Mills. Interestingly, following the long aftershock sequence of these Ridgecrest quakes, there was a small quake in Fall River Mills this morning.

While seeing patterns in randomness—let alone drawing magical straight lines across the landscape—is the origin of conspiracy theory and the bane of serious scientific thinking, it is, nevertheless, interesting to note that the apparently linear nature of the Walker Lane could very well continue through Fall River Mills.

[Image: The Ridgecrest quakes and their aftershocks seem to support the idea of a linear connection along the Walker Lane; note that I have added a straight orange line in the bottom image, purely to indicate the very broad location of the Walker Lane].

While we’re on the subject, it is also interesting to see that, if you continue that same line just a little bit further, connecting Pyramid Lake to Susanville to Fall River Mills, you will hit Mt. Shasta, an active volcano in northern California. Again, if you’ve read the Wired piece, you’ll know that volcanoes seem to have played an interesting role in the early formation of the San Andreas Fault millions of years ago.

In any case, in cautious summary, I should emphasize that I am just an armchair enthusiast for the Walker Lane scenario, not a geologist; although I wrote a feature article about the Walker Lane, I am by no means an expert and it would be irresponsible of me to suggest anything here as scientific fact. It does interest me, though, that aftershocks appear to be illuminating a pretty dead-linear path northwest up the Walker Lane, including into regions where its future route are not yet clear.

Insofar as the locations of these aftershocks can be taken as scientifically relevant—not just a seismic coincidence—the next few weeks could perhaps offer some intriguing suggestions for the Walker Lane’s next steps.

Walker Lane

[Image: The shadow of the San Andreas Fault emerges near sunset at Wallace Creek; photo by BLDGBLOG].

All four long-term readers of BLDGBLOG will know that I am obsessed with the San Andreas Fault, teaching an entire class about it at Columbia and visiting it whenever possible as a hiking destination.

The San Andreas is often a naturally stunning landscape—particularly in places like Wallace Creek, Tomales Bay, or even the area near Devil’s Punchbowl—but the fault’s symbolism, as the grinding edge of two vast tectonic plates, where worlds slide past one another toward an unimaginable planetary future, adds a somewhat mystical element to each visit. It’s like hiking along a gap through which a new version of the world will emerge.

I was thus instantly fascinated several years ago when I read about something called the Walker Lane, a huge region of land stretching roughly the entire length of the Eastern Sierra, out near the California/Nevada border, which some geologists now believe is the actual future edge of the North American continent—not the San Andreas. It is an “incipient” continental margin, in the language of structural geology.

[Image: My own sketch of the Walker Lane, based on Google Maps imagery].

In fact, the Walker Lane idea suggests, the San Andreas is so dramatically torqued out of alignment at a place northwest of Los Angeles known as the “Big Bend” that the San Andreas might be doomed to go dormant over the course of several million years.

That’s good news for San Franciscans of the far future, but it means that a world-shattering amount of seismic strain will need to go somewhere, and that somewhere is a straight shot up the Eastern Sierra along the Walker Lane: a future mega-fault, like today’s San Andreas, that would stretch from the Gulf of California, up through the Mojave Desert, past Reno, and eventually back out again to the waters of the Pacific Ocean (most likely via southwest Oregon).

Much of this route, coincidentally, is followed closely by Route 395, which brings travelers past extinct volcanoes, over an active caldera, within a short drive of spectacular hot springs, and near the sites of several large earthquakes that have struck the region over the past 150 years.

That region—again, not the San Andreas—is where the true tectonic action is taking place, if the Walker Lane hypothesis is to be believed.

[Image: The gorgeous Hot Creek Geologic Site, along the Walker Lane; photo by BLDGBLOG].

In an absolute dream come true, I was able to turn this armchair obsession of mine into a new feature for Wired, and it went online this morning as part of their May 2019 issue.

For it, I spend some time out in the field with Nevada State Geologist James Faulds, a major proponent of the Walker Lane hypothesis. We visited a fault trench, we hiked along a growing rift southeast of Pyramid Lake, and we met several of his colleagues from the University of Nevada, Reno, including geodesist Bill Hammond and paleoseismologist Rich Koehler.

I also spoke with early advocates of the Walker Lane hypothesis, particularly Amos Nur and Tanya Atwater, both of whom have been suggesting, since at least the early 1990s, that something major might be in store for this under-studied region.

[Image: Coso Volcanic Field, near where the Eastern California Shear Zone meets the Walker Lane; photo by BLDGBLOG].

The Wired story is almost entirely focused on the science behind discovering the Walker Lane, from GPS geodesy to LiDAR, but there are also a few scattered thoughts on deep time and the vast imaginative horizon within which geologists operate. This comes mostly by way of Marcia Bjornerud’s new book Timefulness. There is also a brief look at indigenous seismic experience as allegedly recorded in Native American petroglyphs along the Walker Lane, via an interesting paper by Susan Hough.

But, on a more symbolic level, the Walker Lane totally captivates me, including how vertiginous and exciting it is to think about—let alone to hike along!—a new edge to the known world, a linear abyss emerging in the desert outside Los Angeles, slowly rifting north through hundreds of miles of dead volcanoes and disorganized fault lines, gradually pulling all of it together into one clear super-system, flooding with the waters of the Gulf of California, bringing a new version of the Earth’s surface into being in real-time.

In any case, check out the piece over at Wired if any of this sounds up your alley. The piece includes some great photos by Tabitha Soren.

Great Basin Autoglyphs

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

A new exhibition of work by photographer Michael Light opened last night at the Hosfelt Gallery in San Francisco.

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

Called “Great Basin Autoglyphs and Pleistoseas,” the work is part of an “ongoing aerial photographic survey of the arid American West… moving from habited, placed settlements into pure space and its attendant emptiness.”

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

Along the way, Light reframes human civilization as a series of abstract lines inscribed at vast scale through remote areas, less like infrastructure and more like planetary graffiti.

“Twelve thousand years ago,” Light writes, “the Great Basin—that part of the country between California and Utah where water does not drain to the ocean—was 900 feet underwater, covered by two vast and now largely evaporated historical lakes, Bonneville and Lahontan. The remnants of Lake Bonneville today are the Great Salt Lake in Utah and its eponymous salt flats, while the most famous portion of the former Lake Lahontan is the Black Rock Desert in Nevada, an alkali bed that floods and dries each year, creating the flattest land on earth.”

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

Light is an incredibly interesting photographer, and has done everything from wreck-diving old military ships scuttled during nuclear weapons tests in the South Pacific to releasing a book of retouched archival photos from the Apollo Program.

Nicola Twilley and I interviewed Light several years ago for our Venue project, where we discussed these projects at length.

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

In you’re near San Francisco, stop by the Hosfelt Gallery before March 16, 2019, and also consider ordering a copy of Light’s forthcoming book, Lake Lahontan/Lake Bonneville, with related images.

Milled landscapes / Michael Heizer

The question is whether you could hook-up a milling machine to the earth itself. Rather than exact, laser-cut incisions made into boards of hardwood, you would mill entire landscapes out of the open surface of the earth.

This could start small – cutting foundations, bore holes, etc. – but should immediately expand to include larger examples of terrestrial engineering: landscape architecture, earthworks, gardens, perhaps even dikes, dams, and other flood containment systems. The earth-miller could be operated like an ordinary, programmable milling machine today: you input the design required, the exact sequence and dimensions of the cuts, and the machine sets out, milling a new landscape into existence.

In a recent *New York Times Magazine* profile of earthworks/land-sculptor Michael Heizer, we read about “‘City,’ [Heizer’s] own version of Easter Island or Angkor Wat: a modernist complex of abstract shapes – mounds, prismoids, ramps, pits – to be spread across the valley. It was to be experienced over time, in shifting weather, not from a single vantage point or from above but as an accumulation of impressions and views gathered by walking through it. (…) ‘City,’ in its vastness, was meant to synthesize ancient monuments, Minimalism and industrial technology. The work derived inspiration from Mississippian tumuli (ancient North American mounds), the ball court at Chichen Itza in the Yucatan and La Venta in southern Tabasco… At the same time, it suggested airport runways and Modernist architecture.” (Michael Kimmelman, “Art’s Last, Lonely Cowboy”: 6 Feb 05).

Despite – or perhaps because of – the size of Heizer’s “City” (somewhere between the Washington Mall and Central Park, apparently), it’d be perfect for an earth-miller. Several programmable machines with self-sharpening mechanical grinders, pavement saws and rock sanders – and perhaps viab/nozzles, mentioned in an earlier post – set to work. It takes days, weeks even, but then it’s done: the milled landscape of a new earth, abstract volumes glowing in the sunlight.