Luminous Dreamlight

I spent part of the weekend down in Orange County, looking at birds, then the better part of an hour scrolling around on Google Maps, trying to figure out where we’d been all day.

[Image: Courtesy Google Maps.]

In the process, I noticed some incredible street names. I love this development, for example, with its absurdist, greeting-card geography: you can meet someone at the corner of Luminous and Dreamlight, or rendezvous with your Romeo on the thin spit of land where Silhouette meets Balcony.

The same development has streets called Symphony, Pageantry, and Ambiance—and don’t miss “Momento” [sic]. Nearby is a street called Heather Mist.

I live on Yacht Defender; please leave my packages at the front door.

[Image: Courtesy Google Maps.]

As you can probably tell, I have nothing particularly interesting to say about this; I’m just marveling at suburban naming conventions. I’m reminded of when we moved back to L.A. a few years ago and we were looking for paint colors, finding shades like “Online,” “Software,” and “Cyberspace.” A paint called “Download.”

A beautiful new house on Firmware Update, painted entirely in Autocomplete. Spellcheck Lane, painted in a color called Ducking.

[Image: Courtesy Google Maps.]

In any case, Orange County is actually a fascinating, Ballardian landscape of freeways built for no apparent reason other than to connect one grocery store to the next as fast as possible, residential subdivisions forming interrupted crystal-tiling patterns, migratory bird species flying over car parks, and vaguely named corporate research centers on the rims of artificial reservoirs.

Anecdotally, it has always seemed to me that fans of J.G. Ballard—or ostensible fans of J.G. Ballard—are suspiciously quick in condemning the very landscapes where so many of Ballard’s best stories take place, the suburban business parks, toll motorways, and heavily-policed private infrastructures of real estate developments outside London, in the south of France, or here in Orange County, where subdivisions seem named after the very animals whose ecosystems were destroyed during construction.

But, I mean, come on—where else should a J.G. Ballard fan read Concrete Island or Super-Cannes than in a $3 million rented home on Gentle Breeze, pulling monthly paychecks from ambiguously-defined consultant-engineering gigs, studying schematic diagrams for water-treatment plants at your kitchen table, all while driving a leased luxury car?

One such engineering firm, based near the developments described here, describes its expertise as tackling “earth-related problems” on “earth-related projects.” Earth-related problems. There should be a DSM-5 entry for that.

[Image: Courtesy Google Maps.]

Anyway, all future Ballard conventions should take place in landscapes like this—enormous rented homes impossible to climate-control, overlooking electric-SUV dealerships constructed atop former egret nesting grounds—at the metaphorical intersection of Luminous and Dreamlight.

Instrumental Revelation and the Architecture of Abandoned Physics Experiments

Semi-abandoned large-scale physics experiments have always fascinated me: remote and arcane buildings designed for something other than human spatial expectations, peppered with inexplicable instruments at all scales meant to detect an invisible world that surrounds us, its dimensions otherwise impenetrable to human senses.

[Image: Photo by Yulia Grigoryants, courtesy New York Times.]

Although the experiments he visits in the book are—or, at least, at the time of writing, were—still active, this is partly what made me a fan of Anil Ananthaswamy’s excellent The Edge of Physics: A Journey to Earth’s Extremes to Unlock the Secrets of the Universe, published in 2010. The book is a kind of journalistic pilgrimage to machines buried inside mines, installed atop remote mountain peaks, woven into the ground beneath European cities: sites that are incredibly evocative, religious in their belief that an unseen world is capable of revelation, but scientific in their insistence that this unveiling will be achieved through technological means.

A speculative architectural-literary hybrid I often come back to is Lebbeus Woods’s (graphically uneven but conceptually fascinating) OneFiveFour, which I’ve written about elsewhere. In it, Woods depicts an entire city designed and built as an inhabitable scientific tool. Everywhere there are “oscilloscopes, refractors, seismometers, interferometers, and other, as yet unknown instruments, measuring light, movement, force, change.” Woods describes how “tools for extending perceptivity to all scales of nature are built spontaneously, playfully, experimentally, continuously modified in home laboratories, in laboratories that are homes.”

Instead of wasting their lives tweeting about celebrity deaths, residents construct and model their own bespoke experiments, exploring seismology, astronomy, electricity, even light itself.

In any case, both Ananthaswamy’s and Woods’s books came to mind last week when reading a piece by Dennis Overbye in the New York Times about a still-active but seemingly forgotten observatory on Mt. Aragats in Armenia. There, in “a sprawling array of oddly shaped, empty buildings,” a tiny crew of scientists still works, looking for “cosmic rays: high-energy particles thrown from exploding stars, black holes and other astrophysical calamities thousands or millions of light-years away and whistling down from space.”

In the accompanying photographs, all taken by Yulia Grigoryants, we see black boxes perched atop pillars and ladders, in any other context easy to mistake for an avant-garde sculptural installation but, here, patiently awaiting “cosmic rain.” Grigoryants explores tunnels and abandoned labs, hiking around dead satellite-tracking stations in the snow, sometimes surrounded by stray dogs. Just think of the novels that could be set here.

As Overbye writes, despite advances in the design and construction of particle accelerators, such as CERN—which is, in effect, a giant Lebbeus Woods project in real life—“the buildings and the instruments at Aragats remain, like ghost ships in the cosmic rain, maintained for long stretches of time by a skeleton crew of two technicians and a cook. They still wait for news that could change the universe: a quantum bullet more powerful than humans can produce, or weirder than their tentative laws can explain; trouble blowing in from the sun.”

In fact, recall another recent article, this time in the Los Angeles Times, about a doomed earthquake-prediction experiment that has come to the end of its funding. It was “a network of 115 sensors deployed along the California coast to act as ears capable of picking up these hints [that might imply a coming earthquake], called electromagnetic precursors… They could also provide a key to understanding spooky electric discharges known ‘earthquake lights,’ which some seismologists say can burst out of the ground before and during certain seismic events.”

Like menhirs, these abandoned seismic sensors could now just stand there, silent in the landscape, awaiting a future photographer such as Grigoryants to capture their poetic ruination.

Speaking of which, click through to the New York Times to see her photos in full.

Walker Lane Redux

It’s been an interesting few days here in Southern California, with several large earthquakes and an ensuing aftershock sequence out in the desert near Ridgecrest. Ridgecrest, of course, is at the very southern edge of the Walker Lane—more properly part of the Eastern California Shear Zone—a region of the country that runs broadly northwest along the California/Nevada state border that I covered at length for the May 2019 issue of Wired.

[Image: My own loose sketch of the Walker Lane, using Google Maps].

To make a story short, a handful of geologists have speculated, at least since the late 1980s, that the San Andreas Fault could actually be dying out over time—that the San Andreas is jammed up in a place called the “Big Bend,” near the town of Frazier Park, and that it is thus losing its capacity for large earthquakes.

As a result, all of that unreleased seismic strain has to go somewhere, and there is growing evidence—paleoseismic data, LiDAR surveys, GPS geodesy—that the pent-up strain has been migrating deep inland, looking for a new place to break.

That new route—bypassing the San Andreas Fault altogether—is the Walker Lane (and its southern continuation into the Mojave Desert, known as the Eastern California Shear Zone).

What this might mean—and one of the reasons I’m so fascinated by this idea—is that a new continental margin could be forming in the Eastern Sierra, near the California/Nevada state border, a future line of breakage between the Pacific and North American tectonic plates.

If this is true, the Pacific Ocean will someday flood north from the Gulf of California all the way past Reno—but, importantly, this will happen over the course of many millions of years (not due to one catastrophic earthquake). This means that no humans alive today—in fact, I would guess, no humans at all—will see the final result. If human civilization as we know it is roughly 15,000 years old, then civilization could rise and fall nearly 700 times before we even get to 10 million years, let alone 15 million or 20.

In any case, these recent big quakes out near Ridgecrest do not require that the most extreme Walker Lane scenario be true—that is, they do not require that the Walker Lane is an incipient continental margin. However, they do offer compelling and timely evidence that the Walker Lane region is, at the very least, more seismically active than its residents might want to believe.

I could go on at great length about all this, but, instead, I just want to point out one cool thing: the far northern route of the Walker Lane remains something of a mystery. If you’ve read the Wired piece, you’ll know that, for the Walker Lane to become a future continental edge, it must eventually rip back through California and southeastern Oregon to reach the sea. However, the route it might take—basically, from Pyramid Lake to the Pacific—is unclear, to say the least.

One place that came up several times while I was researching my Wired article was the northern California town of Susanville. Susanville is apparently a promising place for study, as geologists might find emergent faults there that could reveal the future path of the Walker Lane.

If you draw a straight line from the Reno/Pyramid Lake region through Susanville and keep going, you’ll soon hit a town called Fall River Mills. Interestingly, following the long aftershock sequence of these Ridgecrest quakes, there was a small quake in Fall River Mills this morning.

While seeing patterns in randomness—let alone drawing magical straight lines across the landscape—is the origin of conspiracy theory and the bane of serious scientific thinking, it is, nevertheless, interesting to note that the apparently linear nature of the Walker Lane could very well continue through Fall River Mills.

[Image: The Ridgecrest quakes and their aftershocks seem to support the idea of a linear connection along the Walker Lane; note that I have added a straight orange line in the bottom image, purely to indicate the very broad location of the Walker Lane].

While we’re on the subject, it is also interesting to see that, if you continue that same line just a little bit further, connecting Pyramid Lake to Susanville to Fall River Mills, you will hit Mt. Shasta, an active volcano in northern California. Again, if you’ve read the Wired piece, you’ll know that volcanoes seem to have played an interesting role in the early formation of the San Andreas Fault millions of years ago.

In any case, in cautious summary, I should emphasize that I am just an armchair enthusiast for the Walker Lane scenario, not a geologist; although I wrote a feature article about the Walker Lane, I am by no means an expert and it would be irresponsible of me to suggest anything here as scientific fact. It does interest me, though, that aftershocks appear to be illuminating a pretty dead-linear path northwest up the Walker Lane, including into regions where its future route are not yet clear.

Insofar as the locations of these aftershocks can be taken as scientifically relevant—not just a seismic coincidence—the next few weeks could perhaps offer some intriguing suggestions for the Walker Lane’s next steps.

Terrestrial Concussion / Infinite Half-Life

[Image: Courtesy Xenon Collaboration, via ScienceNews].

Earthquakes, popularly seen as discrete, large-scale events that occur only once every few years—once a decade, once a century, once every thousand years—turn out to be nearly continuous. There are always earthquakes.

According to ScienceNews, “millions of tiny, undetected earthquakes rumble through the ground” every day in California. These are “quakes of such small magnitude that their signals were previously too small to be separated from noise.”

In other words, while we wait for the Big One—a true seismic event with the power to punctuate and interrupt everyday life—there are millions of smaller earthquakes constantly rattling the floors, walls, and roads we consider stable.

I’m reminded of a recent article in the New York Times about football player Ryan Miller. “Miller has had 10 concussions in all,” we read, “and that is to understate his battering. The brain sits in fluid inside the armor of a skull, and even nonconcussive whacks can result in brain colliding with bone. A couple of hard hits can come to resemble a concussion. The average football player, according to Cantu, takes 600 to 800 hits in high school and 800 to 1,000 in college.”

Concussions are like earthquakes, in other words: we wait for the Big One, but this means that, by definition, we miss the cumulative effects of all the little shocks along the way. Everything is moving; the earth is not stable; the landscape is jolting and cracking at a concussive rate, every day, beneath our feet.

On the opposite side of this temporal spectrum, the same website, ScienceNews, also reported that some radioactive decay takes so long, they can outlast our current universe.

“It takes 1 trillion times the age of the universe for a xenon-124 sample to shrink by half,” we read. “The decay, seen in xenon-124 atoms, happens so sparingly that it would take 18 sextillion years (18 followed by 21 zeros) for a sample of xenon-124 to shrink by half, making the decay extremely difficult to detect.”

That’s a bit of an understatement: it means you would need a machine significantly older than the universe to detect and measure these moments of decay.

[Image: Xenon, via Images of Elements].

The breakdown of this specific example—the element xenon-124—involves something called “two-neutrino double electron capture,” and I won’t even pretend to understand what it means. Nevertheless, what interests me here is the implied possibility that, well, on a universal timescale, everything is decaying. Everything is breaking down. But it occurs on a scale so huge it is inaccessible to human experience, certainly, but perhaps even to human cognition.

Imagine an element that decays only once every 750 trillion years. (Our current universe is 14 billion years old.) Imagine a creature living 749.999 trillion years, arrogantly thinking that its world is immortal.

In any case, this feels like the exact inverse of the previous example: while we’re on the hunt for radioactive decay, or while we’re out there looking for millions of overlooked mini-quakes and micro-concussions, we might actually miss detecting these massive punctuations of time, epic cycles so rare and daunting that our own universe cannot accommodate them.

For those attentive enough, in other words, there are concussions and earthquakes constantly; yet, on a large-enough timescale, everything decays, everything breaks down, everything has a half-life. Everything is radioactive. In the midst of all that, we make breakfast and take the subway to work.

300 Years of Dust

I’m late to the news that the ancient Akkadian Empire might have collapsed due to “dust activity” that “persisted for 300 years.” As a resident of Los Angeles, it’s sobering to read.

“Archaeologists have long been baffled by the abrupt abandonment of northern Mesopotamian settlements roughly 4,200 years ago,” Eos reports. This otherwise mysterious abandonment might have been catalyzed by three centuries of dust—“dust for 300 years”—arising from extreme drought and aridity.

The dust was so bad, in fact, it left a geological record in regional stalactites.

Perhaps that’s how the end will come, as a slow but relentless accumulation of dust on windowsills—in California, Arizona, Nevada—a civilizational collapse that should have been signaled, in retrospect, by the rapid growth of the house-cleaning economy, but that, for at least a generation, will take the form of puzzled homeowners wiping wetted cloths along wood trim, wondering if there’s something going on outside.

Fault Lines/Point Clouds

[Image: Otherwise unrelated satellite view of the Pyramid Lake Fault (diagonal line from top left to bottom right), via Google Maps].

As a quick update to the Walker Lane post, there are some Walker Lane fault system LiDAR data sets available for download, if you’re able to play around with that sort of thing.

Walker Lane

[Image: The shadow of the San Andreas Fault emerges near sunset at Wallace Creek; photo by BLDGBLOG].

All four long-term readers of BLDGBLOG will know that I am obsessed with the San Andreas Fault, teaching an entire class about it at Columbia and visiting it whenever possible as a hiking destination.

The San Andreas is often a naturally stunning landscape—particularly in places like Wallace Creek, Tomales Bay, or even the area near Devil’s Punchbowl—but the fault’s symbolism, as the grinding edge of two vast tectonic plates, where worlds slide past one another toward an unimaginable planetary future, adds a somewhat mystical element to each visit. It’s like hiking along a gap through which a new version of the world will emerge.

I was thus instantly fascinated several years ago when I read about something called the Walker Lane, a huge region of land stretching roughly the entire length of the Eastern Sierra, out near the California/Nevada border, which some geologists now believe is the actual future edge of the North American continent—not the San Andreas. It is an “incipient” continental margin, in the language of structural geology.

[Image: My own sketch of the Walker Lane, based on Google Maps imagery].

In fact, the Walker Lane idea suggests, the San Andreas is so dramatically torqued out of alignment at a place northwest of Los Angeles known as the “Big Bend” that the San Andreas might be doomed to go dormant over the course of several million years.

That’s good news for San Franciscans of the far future, but it means that a world-shattering amount of seismic strain will need to go somewhere, and that somewhere is a straight shot up the Eastern Sierra along the Walker Lane: a future mega-fault, like today’s San Andreas, that would stretch from the Gulf of California, up through the Mojave Desert, past Reno, and eventually back out again to the waters of the Pacific Ocean (most likely via southwest Oregon).

Much of this route, coincidentally, is followed closely by Route 395, which brings travelers past extinct volcanoes, over an active caldera, within a short drive of spectacular hot springs, and near the sites of several large earthquakes that have struck the region over the past 150 years.

That region—again, not the San Andreas—is where the true tectonic action is taking place, if the Walker Lane hypothesis is to be believed.

[Image: The gorgeous Hot Creek Geologic Site, along the Walker Lane; photo by BLDGBLOG].

In an absolute dream come true, I was able to turn this armchair obsession of mine into a new feature for Wired, and it went online this morning as part of their May 2019 issue.

For it, I spend some time out in the field with Nevada State Geologist James Faulds, a major proponent of the Walker Lane hypothesis. We visited a fault trench, we hiked along a growing rift southeast of Pyramid Lake, and we met several of his colleagues from the University of Nevada, Reno, including geodesist Bill Hammond and paleoseismologist Rich Koehler.

I also spoke with early advocates of the Walker Lane hypothesis, particularly Amos Nur and Tanya Atwater, both of whom have been suggesting, since at least the early 1990s, that something major might be in store for this under-studied region.

[Image: Coso Volcanic Field, near where the Eastern California Shear Zone meets the Walker Lane; photo by BLDGBLOG].

The Wired story is almost entirely focused on the science behind discovering the Walker Lane, from GPS geodesy to LiDAR, but there are also a few scattered thoughts on deep time and the vast imaginative horizon within which geologists operate. This comes mostly by way of Marcia Bjornerud’s new book Timefulness. There is also a brief look at indigenous seismic experience as allegedly recorded in Native American petroglyphs along the Walker Lane, via an interesting paper by Susan Hough.

But, on a more symbolic level, the Walker Lane totally captivates me, including how vertiginous and exciting it is to think about—let alone to hike along!—a new edge to the known world, a linear abyss emerging in the desert outside Los Angeles, slowly rifting north through hundreds of miles of dead volcanoes and disorganized fault lines, gradually pulling all of it together into one clear super-system, flooding with the waters of the Gulf of California, bringing a new version of the Earth’s surface into being in real-time.

In any case, check out the piece over at Wired if any of this sounds up your alley. The piece includes some great photos by Tabitha Soren.

Fieldworks

[Image: Via Space Saloon].

For the second year in a row, Space Saloon’s Fieldworks program will take place out in the Morongo Valley, in the California desert near both the San Andreas Fault and Joshua Tree National Park.

Fieldworks bills itself as an “experimental design-build festival,” hosted by a “traveling group that investigates perceptions of place.” The program includes guest lectures, hands-on workshops in digital site-documentation, charrettes, and an eventual build-out of a few pavilion-like proposals.

[Image: Via Space Saloon].

You can read more at the Fieldworks website, including this useful FAQ, but it looks like a great opportunity to get your hands dirty in an extraordinary landscape only two hours or so outside Los Angeles.

Click through for the registration page.

The Search for Bill Ewasko

[Images: Hiking in Joshua Tree National Park; photos by Geoff Manaugh].

“In June 2010, Bill Ewasko traveled alone from his home in suburban Atlanta to Joshua Tree National Park, where he planned to hike for several days.” So begins the story of an avid hiker and Vietnam vet who went missing in Joshua Tree, a mere two-hour drive from Los Angeles, and has never been found to this day.

It has now been nearly eight years since his disappearance, but the search for Bill Ewasko never ended: people with no connection to the Ewasko family have continued to look, trading maps & GIS files online, scouring ever more remote regions of the park on foot, and arguing about the meaning of a mysterious cell-phone “ping” that seemed to place Ewasko so far outside of the original search area that, at first, many hikers simply dismissed the data.

The ongoing search for Ewasko has since become one of the most geographically extensive missing-person searches in U.S. history, with well more than a thousand miles’ worth of routes covered in Joshua Tree National Park alone.

[Image: Joshua Tree National Park; photo by Geoff Manaugh].

I began following the story of the Ewasko search in the late spring of 2016, following a series of posts on a blog called Other Hand, written by retired civil engineer Tom Mahood, and emailing a handful people still involved with the search. In the spring of 2017, I was able to join one of those searchers, Los Angeles musician Adam Marsland, in person on a new hike into a part of the park known as Smith Water Canyon. Then, when I was back in Palm Springs to report on the National Valet Olympics, I stayed in town for a few days to do several more hikes of my own, trying to familiarize myself not only with the landscape of Joshua Tree’s mountainous northwest, where Ewasko disappeared, but with the sensation of being alone there.

In Joshua Tree, even when the roads through the heart of the park are clogged with vehicles, it is often true that the instant you hike just one more ridge away from whatever trail you were meant to follow, you are utterly and completely on your own.

[Image: Joshua Tree National Park; photo by Geoff Manaugh].

A feature I wrote about the Ewasko search is now online over at the New York Times Magazine, part of their “Voyages” issue. The piece not only recounts the known details of Ewasko’s June 2010 hike, it also includes a look at so-called “lost person behavior” algorithms, deployed to anticipate how a stranger will act in an unfamiliar landscape, and it briefly reviews some of the more outlandish theories of what might have happened to Ewasko and how his cell phone appeared to be in such an unexpected region of the park.

[Image: Joshua Tree National Park; photo by Geoff Manaugh].

What drew me to Ewasko’s story in the first place was not just the fundamental mystery of how it could have happened—that is, how a competent outdoorsman could completely disappear from the surface of the Earth only two hours outside Los Angeles—but also why disappearance itself seems to draw so many people in. Trying to understand this led me to a long list of people, including musician Adam Marsland, as well as a cell-phone forensics expert and USC alum named Mike Melson who founded an independent search-and-rescue group inspired by a line from The Book of Matthew: “Your Father in heaven is not willing that any of these little ones should be lost.”

As with all stories of this kind, of course, there is so much more to tell, so many more details that only add to the mystery of Ewasko’s disappearance and to the depth of character of the people involved in searching for him, but there was not enough space to get into it all. This includes questioning the very idea of wilderness, and how we define it, when a step beyond the boundaries of civilized space can occur mere yards from the edge of a popular trail.

Here is a link to the piece, which also features evocative photographs by Philip Montgomery.

(Previously on BLDGBLOG: Algorithms in the Wild).

Gold Fault Laser

[Image: Drawing courtesy Geothermal Futures Lab].

In the general chaos of renovating a house here in Los Angeles, I missed this lecture and reception on Friday night, launching a semi-fictional “Geothermal Futures Lab” at SCI-Arc.

It involves installing a gold-plated laser somewhere deep in the San Andreas Fault to extract geothermal energy from the landscape. Think of it as a kind of gonzo version of the San Andreas Fault Observatory at Depth.

[Image: Drawing courtesy Geothermal Futures Lab].

The press release, from architect Mark Foster Gage, is a great example of a solipsistic inventor’s imagination at full blast—featuring “geothermal resonance technologies,” nano-gold foil-wrapped laser components, an “experimental phenolic cured resin foam,” and so on.

The functioning of the equipment would also rely, at least partially, on existing “metal deposits along the strike-slipping continental plates,” bringing to mind both the naturally occurring nuclear reactors in Gabon and the giant Earth-battery cells circulating beneath the forests of central Canada: landscapes whose geochemistry lends them to these sorts of giant, speculative energy installations.

Or see Norway’s extraordinary Hessdalen lights, a geologically electrified valley that seems ripe for a Mark Foster Gage-like architectural-energy proposal.

In all these cases, of course, what’s also worth noting is that, as fantastic as this sort of facility might seem—whether it’s a lab extracting electrical energy from the San Andreas Fault, as Foster Gage suggests, or one positioned above geochemical differentials in the Canadian soil—as soon as the power it supplies can be made available through the national grid, it would immediately pass from some sort of absolutely bonkers sci-fi vision of the near-future to, frankly, something utterly mundane. It would simply be where the power comes from, and people would shrug it off as a mere utility (if they think about it at all).

But what this also means is that we might already, right now, be missing out on seeing the truly otherworldly nature of our own power-generation facilities, which have all too easily disappeared into the infrastructural background of the modern world. Science fiction is already here, in other words, we just tend to refer to it as infrastructure. See, for example, Crescent Dunes or PS10. Or, for that matter, take a harder look at oil.

[Images: Drawings courtesy Geothermal Futures Lab].

In any case, here’s a sample from the project text, obligatory typos and all:

The exhibited technology capitalizes on the unique tungsten-saturated substrate of the San Andres fault through the use of a visible-light Q-switched Nd:YAG lasers, tuned to extract sustainable magno-electrical energy from a +678 degree Kelvin supercritical water deposits located adjacent to a stable magma chamber 4.4km beneath the Earths surface. This supercritical water, that behaves both as liquid and gas, is vaporized through 3,780 Kelvin bursts which at peak power induce a supercritical matter state releasing energy in exponential excess of its matter equivalent. The presence of heterogeneous frequency fields in metal deposits along the strike-slipping continental plates supercharges the pockets of supercritical water with magnetic nuons which are forced upwards with velocity µ as a result of the pressure gradient along the vertical faults. Due to the variable decay rate of metals in the presence of such high trajectory nuons, the prototype laser resonance mechanism itself is encased in an experimental phenolic cured resin foam (Cas no. 000050-00-0 with a normal specific gravity of 120 kg/m3) which insulates the process from outside magnetic interference. For rapid nuon decay protection the foam resin is additionally coated with the same seven µm micrometer nano-gold foil used to encase existing NASA satellites. This thick film of gold nano-molecules particles gives the machine its striking gold aesthetic appearance.

A nuon-resistant radiant machine buried in the San Andreas Fault, extracting energy from the friction between tectonic plates? With lasers? Yes, please.

[Images: Drawings courtesy Geothermal Futures Lab].

The exhibition itself is up until March 4; stop by SCI-Arc to see more or check out the project’s website.

(Earlier on BLDGBLOG: San Andreas: Architecture for the Fault. Thanks to Wayne Chambliss and Eva Barbarossa for the heads up!)

Parking For Gold: On the Frontlines with America’s Best Valet Parkers

[Image: Valets stretch at the National Valet Olympics in Palm Springs; photo by BLDGBLOG].

When I first heard about the National Valet Olympics, I knew it was something I’d want to see someday. The nation’s best valet parkers gathering together in a parking lot somewhere—in Chicago, in Miami Beach, in Palm Springs—to wage spatial warfare against one another, battling head-to-head over who has the best parking technique? It sounded like something J.G. Ballard would come up with while playing Settlers of Catan.

[Image: Getting ready for the National Valet Olympics; photo by BLDGBLOG].

The very idea that there could be an organized event for competitive valet parking was fascinating to me, an unexpected variation on a peculiarly American narrative of the upstart athlete, the self-taught Natural.

The games evoked images of men and women in small towns throughout the United States dragging themselves out of bed before dawn to practice three-point turns and parallel parking in under-lit lots, of kids growing up trading sports cards featuring portraits of valet parkers, of autographed posters hanging on the walls of rental car facilities drawing consumers’ attention to these legends of American emptiness.

Who among us can master the modern lot, its open geometry, its clean lines, its spatial potential? Why be LeBron James when you can be the world’s best valet parker?

[Image: Advanced Parking Concepts valets stretch their legs at the National Valet Olympics; photo by BLDGBLOG].

The Olympics were as much as about a niche athletic pursuit as they were about everyday transportation infrastructure, I thought, and I had my calendar marked for more than a year leading up to the 2017 games.

[Image: Packing trunks at the National Valet Olympics in Palm Springs; photo by BLDGBLOG].

I was finally able to attend the Olympics in person for The Atlantic, and the resulting article just went up online.

Held in Palm Springs, the games introduced me to a valet who grew up in a Syrian refugee camp, as well as one who volunteers with the California Army National Guard; I heard the story of a regional manager who once SCUBA-dived through a flooded parking lot outside New York in order to check on clients’ cars, and I followed one team in particular, Advanced Parking Concepts (APC) from Verona, New Jersey, on their most recent attempt to win it all. Taking the games seriously, APC got into combat shape by running wind sprints up the same New Jersey hill where Herschel Walker once trained.

[Image: The stage is set at the National Valet Olympics in Palm Springs; photo by BLDGBLOG].

If this sounds even remotely interesting—transportation infrastructure as a venue for personal athletic achievement—then consider reading the article in full over at The Atlantic, and, if you’re a valet parker, please be in touch! I heard so many good stories while writing this article, and I’d love to hear more.

[Image: APC valets huddle during the National Valet Olympics; photo by BLDGBLOG].