Norwegian Dream Tunnels

Almost exactly five years ago, I was in the Norwegian town of Tromsø to speak at a conference called “Future North,” part of the annual Arctic Frontiers event.

One of the most interesting parts of my visit—and I do not say this to downplay the conference, but to indicate my enthusiasm for infrastructure—was this odd bit of traffic design: to get back and forth from Tromsø to its local airport by car, you have to pass through a sprawling underground tunnel network, complete with at least one subterranean roundabout carved into the roots of the mountain, a journey that, for someone newly arrived and jet-lagged like myself, seemed surreally endless (it probably took three minutes).

At the end of the journey, though, it gets stranger: you pop out of the ground floor of an otherwise nondescript building and turn directly onto a normal town road, passing through an opening that looks like an entrance to an underground parking garage.

These images, taken from Google Street View, show that building from the Tromsø side, peering into the mountain depths within. (Here is the tunnel entrance on Google Maps.)

While we’re on the subject of Norwegian tunnels, however, it would be a mistake not to mention the Lærdal Tunnel, allegedly “the longest road tunnel in the world.”

The tunnel is so long that, to address potential adverse effects on human neurology, it includes artificial caverns lit to invoke the Homeric glow of dawn.

[Image: The Lærdal Tunnel, photo by Patrick Reijnders, via Wikipedia.]

From Wikipedia:

The design of the tunnel takes into consideration the mental strain on drivers, so the tunnel is divided into four sections, separated by three large mountain caves at 6-kilometre (3.7 mi) intervals. While the main tunnel has white lights, the caves have blue lighting with yellow lights at the fringes to give an impression of sunrise. The caves are meant to break the routine, providing a refreshing view and allowing drivers to take a short rest. The caverns are also used as turnaround points and for break areas to help lift claustrophobia during a 20-minute drive through the tunnel. In the tunnel, there is a sign on every kilometer indicating how many kilometers have already been covered, and also how many kilometers there are still to go. To keep drivers from being inattentive or falling asleep, each lane is supplied with a loud rumble strip towards the centre.

As another site mentions, “Since 1990, research has been carried out to study driver behavior in long road tunnels.” Of course, one wonders how extreme this research has gotten, perhaps suggesting a new story by Nick Arvin or J.G. Ballard. (The construction of the tunnel is also fascinating, involving lasers, GPS satellites, and computer-controlled drilling platforms.)

Tunnels that mimic sunrise, built to accommodate human neurology using artificial stars as reference points, emerging from the ground-floors of buildings in coastal towns.

Dream tunnels, perhaps just one floor beneath your apartment, leading deep into the mountains beyond.

(If you just can’t get enough Norwegian road tunnels, check out Kiln, previously on BLDGBLOG.)

Gold Fault Laser

[Image: Drawing courtesy Geothermal Futures Lab].

In the general chaos of renovating a house here in Los Angeles, I missed this lecture and reception on Friday night, launching a semi-fictional “Geothermal Futures Lab” at SCI-Arc.

It involves installing a gold-plated laser somewhere deep in the San Andreas Fault to extract geothermal energy from the landscape. Think of it as a kind of gonzo version of the San Andreas Fault Observatory at Depth.

[Image: Drawing courtesy Geothermal Futures Lab].

The press release, from architect Mark Foster Gage, is a great example of a solipsistic inventor’s imagination at full blast—featuring “geothermal resonance technologies,” nano-gold foil-wrapped laser components, an “experimental phenolic cured resin foam,” and so on.

The functioning of the equipment would also rely, at least partially, on existing “metal deposits along the strike-slipping continental plates,” bringing to mind both the naturally occurring nuclear reactors in Gabon and the giant Earth-battery cells circulating beneath the forests of central Canada: landscapes whose geochemistry lends them to these sorts of giant, speculative energy installations.

Or see Norway’s extraordinary Hessdalen lights, a geologically electrified valley that seems ripe for a Mark Foster Gage-like architectural-energy proposal.

In all these cases, of course, what’s also worth noting is that, as fantastic as this sort of facility might seem—whether it’s a lab extracting electrical energy from the San Andreas Fault, as Foster Gage suggests, or one positioned above geochemical differentials in the Canadian soil—as soon as the power it supplies can be made available through the national grid, it would immediately pass from some sort of absolutely bonkers sci-fi vision of the near-future to, frankly, something utterly mundane. It would simply be where the power comes from, and people would shrug it off as a mere utility (if they think about it at all).

But what this also means is that we might already, right now, be missing out on seeing the truly otherworldly nature of our own power-generation facilities, which have all too easily disappeared into the infrastructural background of the modern world. Science fiction is already here, in other words, we just tend to refer to it as infrastructure. See, for example, Crescent Dunes or PS10. Or, for that matter, take a harder look at oil.

[Images: Drawings courtesy Geothermal Futures Lab].

In any case, here’s a sample from the project text, obligatory typos and all:

The exhibited technology capitalizes on the unique tungsten-saturated substrate of the San Andres fault through the use of a visible-light Q-switched Nd:YAG lasers, tuned to extract sustainable magno-electrical energy from a +678 degree Kelvin supercritical water deposits located adjacent to a stable magma chamber 4.4km beneath the Earths surface. This supercritical water, that behaves both as liquid and gas, is vaporized through 3,780 Kelvin bursts which at peak power induce a supercritical matter state releasing energy in exponential excess of its matter equivalent. The presence of heterogeneous frequency fields in metal deposits along the strike-slipping continental plates supercharges the pockets of supercritical water with magnetic nuons which are forced upwards with velocity µ as a result of the pressure gradient along the vertical faults. Due to the variable decay rate of metals in the presence of such high trajectory nuons, the prototype laser resonance mechanism itself is encased in an experimental phenolic cured resin foam (Cas no. 000050-00-0 with a normal specific gravity of 120 kg/m3) which insulates the process from outside magnetic interference. For rapid nuon decay protection the foam resin is additionally coated with the same seven µm micrometer nano-gold foil used to encase existing NASA satellites. This thick film of gold nano-molecules particles gives the machine its striking gold aesthetic appearance.

A nuon-resistant radiant machine buried in the San Andreas Fault, extracting energy from the friction between tectonic plates? With lasers? Yes, please.

[Images: Drawings courtesy Geothermal Futures Lab].

The exhibition itself is up until March 4; stop by SCI-Arc to see more or check out the project’s website.

(Earlier on BLDGBLOG: San Andreas: Architecture for the Fault. Thanks to Wayne Chambliss and Eva Barbarossa for the heads up!)

A Voice Moving Over The Waters

[Image: The Jim Creek Naval Radio Station from Popular Mechanics].

For a variety of reasons, I’ve been looking at a variety of large terrestrial antenna sites built for communicating with submarines. This is the field of Very Low Frequency (VLF) and Extremely Low Frequency radio transmission (the latter wonderfully abbreviated as ELF).

This is a topic already explored here several years ago, of course, with the Project Sanguine antenna field in Wisconsin, for example, and the Cutler array up on a peninsula in Maine. But a few other examples came up that I thought I’d post.

One is the example you see above: the Jim Creek Naval Radio Station in the woods of Washington State, as featured here in an old issue of Popular Mechanics. The Jim Creek facility is basically an entire valley in the Pacific Northwest, denuded of its trees and then strung with the harp-like cables of a mega-antenna. This antenna then broadcasts “the voice that crosses the Pacific,” as Popular Mechanics describes it, including U.S. military ships and submarines.

[Image: The antenna field at Jim Creek, via Wikipedia].

Briefly, although it’s technically irrelevant, it is nonetheless interesting in this context to read about the so-called “Hessdalen lights,” a phenomenon that appears to be caused by natural electrical currents moving through a remote Norwegian valley.

The scientific explanation for these “lights” is incredible.

Back in 2011, New Scientist reported, a scientific team “analyzed rock samples from Hessdalen and found that it is a valley of two halves: the rocks on one side of the Hesja river are rich in zinc and iron, those on the other are rich in copper. Then, during the 2012 mission someone mentioned an abandoned sulphur mine in the valley. ‘For me it was news,’ says [head scientist Jader Monari from the Institute of Radio Astronomy]. ‘We found zinc and iron on one side and copper on the other. If there is sulphur in the water in the middle, it makes a perfect battery.’”

By a weird fluke of geochemistry, the entire valley is a natural electrical cell! Now imagine a valley somewhere—in Washington State, say—acting as a giant natural radio transmitter: a geological radio station broadcasting signals out to sea.

In any case, here is the Jim Creek facility on Google Maps.

Two other quick things to mention: as a commenter pointed out here a few years ago, there is a spectacular naval-communications facility located on a peninsula in Western Australia called the Harold E. Holt Naval Communication Station.

[Image: Harold E. Holt Naval Communication Station, via Google Maps].

As described by the Australian government, the facility “consists of one central tower surrounded by two concentric circles each of six smaller towers ranging from 304 to 387 meters in height and is 2.54 km in diameter. It communicates over immense distances with submerged submarines in the Indian and Pacific Oceans.”

According to this commenter, the station “has an eerie suggestion of sacred geometry[:] pentagons and symmetrical shapes, all concentric. It is said that under the array, light bulbs held in the hand will glow.” This is not impossible; recall the work of artist Richard Box.

Indeed, seen on Google Maps, the facility is breathtaking. Be sure to zoom out to get a sense of how isolated this place is. Here is a view of the antennas from the nearby beach.

Finally, there is something called ZEVS. ZEVS is a secretive, Soviet-era electromagnetic facility and submarine-communication antenna array that allegedly exists somewhere beneath the forests of the Kola Peninsula.

There’s not a ton of information about it online, but I’m also just lazily Googling things at the moment and have undoubtedly missed something; if you have more details, by all means please feel free to share.

Military Cave Logistics

[Image: “Humvees are stored inside the Frigaard Cave in central Norway. The cave is one of six caves that are part of the Marine Corps Prepositioning Program-Norway, which supports the equipping of Marine Expeditionary Brigade consisting of 15,000 Marines and with supplies for up to 30 days.” U.S. Marine Corps photo by Lance Cpl. Marcin Platek].

Norwegian caves are being stuffed full of U.S. military equipment, including armored Humvees, tanks, and cargo containers full of weaponry, all part of a vast and semi-subterranean supply chain maintained to help wage future wars around the world.

The Marines have “stashed weapons and equipment in the Norwegian countryside since the 1980s,” War is Boring explains, in sites that include artificially enlarged and fortified caves. It’s all about logistics: “With this setup, Marines can fly in and be ready for a fight in no time.”

[Image: “Rows of front loaders and 7-ton trucks sit, gassed up and ready to roll in one of the many corridors in the Frigard supply cave located on the Vaernes Garrison near Trondheim, Norway. This is one of seven [see previous caption!] caves that make up the Marine Corps Prepositioning Program-Norway facility. All the caves total more than 900,000 sq. ft. of storage space, full of enough gear to outfit 13,000 Marines for up to 30 days.” U.S. Marine Corps photo by Sgt. Matt Lyman].

These facilities are commonly described as “supply caves,” and they hold warfighting gear in a state of indefinite readiness, “reserved for any time of crisis or war.”

Marines can simply fly in, unlock their respective caves, and grab the keys to one of hundreds, if not thousands, of combat-ready vehicles, all “gassed up and ready to roll in one of the many corridors” of this subterranean empire on the edges of American influence.

Among many other points of interest, the Marines identify six such supply caves in the caption of one image and seven caves in the caption of another, as if—assuming this is not just a minor clerical error—the Marines themselves don’t even know how many caves they have.

Instead, there’s just Norway, some faraway land of underground voids we’ve stuffed full of combat gear, like emperors stocking our own tombs in advance of some future demise—the actual number of caves be damned, for who will be left counting at the end of the world?

[Image: “Medium Tactical Vehicle Replacements, High Mobility Multipurpose Wheeled Vehicles and trailers, which belong to Marine Corps Prepositioning Program-Norway are staged in a storage cave at Tromsdal, Norway, Feb. 24, 2014. Marine Corps began storing equipment in several cave sites throughout Norway in the 1980s to counter the Soviets, but the gear is now reserved for any time of crisis or war.” U.S. Marine Corps photo by Lance Cpl. Sullivan Laramie].

On one level, I’m reminded of Marcus Trimble’s old joke that France has been constructing a back-up version of itself in China. It is a frenzied act of “pre-emptive preservation,” led by the cultural ministers of that sclerotic nation of well-tended chateaux who realized that la belle France could only survive if they built immediately ready copies of themselves elsewhere.

Only, in France’s case, it wasn’t willful self-burial in Norwegian caves, but in the real estate free-for-all of urban China. After all, Trimble suggested, that country’s “construction industry seems perfect for the task of backing up bricks rather than bits—cheap and powered by the brute force of sheer population. Copies of places may be made in a fraction of the time that it took to create them. If, in the event of a catastrophic episode, the part of France in question could be restored and life would go on as it was before.”

[Image: “China: ample space for a spare copy of France”; image by Marcus Trimble].

Militarize this, secret it away in a cave in Scandinavia, and you have something roughly approximately what’s called the Marine Corps Prepositioning Program.

However, I was also reminded of a recent paper by Pierre Belanger and Alexander Scott Arroyo at Harvard’s GSD. There, Belanger and Arroyo describe the U.S. military as a kind of planetary logistics challenge. (A PDF of their paper is available here courtesy of the U.S. Department of Defense).

Specifically, it is the problem of building and often violently maintaining “logistics islands,” as Belanger and Arroyo describe them, that now characterizes much of the U.S. military’s global behavior, an endless quest for finding and protecting “a secure staging ground adjacent to the theater of operations,” in an era when adjacency is increasingly hard to define. As they explain:

While logistical acquisitions are managed by the Defense Logistics Agency (DLA), logistical operations in the field are predominantly coordinated by USTRANSCOM. On average, the command oversees almost 2,000 air missions and 10,000 ground shipments per week, with 25 container ships providing active logistical support. From October 2009 through September 2010 alone, USTRANSCOM flew 37,304 airlift missions carrying over 2 million passengers and 852,141 tons of cargo; aerially refueled 13,504 aircraft with 338,856,200 pounds of fuel on 11,859 distinct sorties; and moved nearly 25 million tons of cargo in coordinated sea-land operations. DLA and USTRANSCOM and their civilian partners are responsible for the largest, most widespread, and most diverse sustained logistics operation in history.

The largest, most widespread, and most diverse sustained logistics operation in history.

The obvious and intended resonance here is that military operations perhaps now most closely resemble complicated UPS deliveries than anything like actual ground combat. However, we can also infer from this that establishing new and ever more convenient logistics islands is vital to U.S. national security.

A literal archipelago of shipping hubs is thus key to the country’s global military activities, and this not only requires sites like Diego Garcia, which Belanger and Arroyo specifically write about, or even the “mobile offshore bases” they also describe, where the pop-up urbanism of Archigram has been inadvertently realized by the U.S. military, but artificially fortified caves near the Arctic Circle where truly daunting amounts of military materiel are now kept on hand, as if held frozen in some imperial freezer, awaiting the day when global tensions truly heat up.

Read a bit more at War is Boring.

(This is more or less irrelevant, but you might also like Kiln, earlier on BLDGBLOG).

Kiln

[Image: Via Tunnel Business Magazine].

The abandoned Runehamar road tunnel on the southwest coast of Norway has been redesigned and given new life as a site for the experimental burning of trucks, cargo, and other vehicular structures in order to learn how subterranean road fires can best be extinguished.

It’s a kind of Nordic funeral pyre built not for the bodies of kings but for the products of the automotive industry, an underground bonfire of simulated car wrecks that seems more like something you’d see in the fiction of J.G. Ballard.

The overall structure has been modified to serve as a closely-controlled thermal environment—more a furnace than a piece of transportation infrastructure—complete with an array of instruments and sensors, and a system of sprinklers and ventilation fans that let observers try out novel methods of fire suppression.

In a sense, this is what might happen if someone like architect Philippe Rahm was given a limited budget and hired to design experimental subterranean road infrastructure, with his work’s focus on the thermal behavior of spaces and other non-visual dimensions of the built environment.

The Norwegian Public Roads Association explains why all this is necessary:

There is a need for more detailed knowledge on how and why various semi-trailer cargos burn so strongly and why they spread so quickly. The high heat exposure from the semi-trailers to the tunnel linings also needs more focus. The only reasonable way of finding an answer to these questions is to carry out systematic large scale experiments that can provide a better basis for the design of technical systems in road tunnels.

There’s more to write about the tunnel, I’m sure, and there is a bit more detail in the original post on Gizmodo—including, for those of you curious, this PDF that comes complete with structural and thermal diagrams of the burning apparatus.

But I suppose I’m more interested in the sheer strangeness of an old road tunnel being transformed into a venue for controlled thermal events. It is ritualistic, repetitive, and pyromaniacal, as if vitamin-D-deprived engineers in lab coats have been endlessly sacrificing sacred cargo for some infernal mountain, an altar for automotive transubstantiation, where unknown driving objects are reduced to ash and studied, again and again, filmed and re-watched—until the next fire, when the sprinklers fill up again and the vents, like a buried engine, begin to roar.

(Via Gizmodo).

Kristian Birkeland’s magnetic museum: or, ‘sunspots like no one else can do better’

Kristian Birkeland, the first scientist correctly to deduce the solar-magnetic origin of the Northern Lights, at one point was obsessed with building an experimental device here on Earth that could reproduce those polar-bound auroral effects.

Though he started off only vaguely over-ambitious, a combination of hyper-caffeination in the Egyptian desert and addiction to veronal produced BLDGBLOG-worthy architectural hubris I feel should be quoted here in full. So, bearing in mind that this is a true story, as told by Lucy Jago’s book The Northern Lights:

1) Birkeland’s vacuum chamber was a ‘machine in which to recreate many phenomena of the solar system beyond the Earth. He drew up plans for a new machine unlike anything that had been made before.

…[L]ike a spacious aquarium, [the box] would provide a window into space. The box would be pumped out to create a vacuum and he would use larger globes and a more powerful cathode to produce charged particles. With so much more room he would be able to see effects, obscured in the smaller tubes, that could take his Northern Lights theory one step further – into a complete cosmogony, a theory of the origins of the universe. (…) All sorts of beautiful solar phenomena could recreated this way, such as the sun’s corona, the shining layers of the sun’s outer atmosphere, usually visible only during a total eclipse. He could reproduce sunspots that moved across the surface of the terrella [the electrical globe-mechanism inside the vacuum chamber itself]… With this extraordinary machine Birkeland was able to simulate Saturn’s rings, comet tails, and the Zodiacal Light. He even experimented with space propulsion using cathode rays. Sophisticated photographs were taken of each simulation, to be included in the next volume of Birkeland’s great work, which would discern the electromagnetic nature of the universe and his theories about the formation of the solar system.

The ensuing period of nearly hypnotised overwork is referred to later as ‘Birkeland’s immersion into the universe of his vacuum chamber’.

2) But then he got ambitious. In a letter written from a hotel in Aboukir, Egypt, where Birkeland’s addiction to caffeine and veronal was driving him insane – along with the Saharan sun – he wrote: ‘And, finally, I am going to tell you about a great idea I have had; it’s a bit premature but I think it will be realised. I am going to get some money from the state and from friends, to build a museum for the discovery of the Earth’s magnetism, magnetic storms, the nature of sunspots, of planets – their nature and creation. On a little hill I will build a dome of granite, the walls will be a metre thick, the floor will be formed of the mountain itself and the top of the dome, fourteen metres in diametre, will be a gilded copper sphere. Can you guess what the dome will cover? When I’m boasting I say to my friends here “next to God, I have the greatest vacuum chamber in the world.” I will make a vacuum chamber of 1,000 cubic metres and, every Sunday, people will have the opportunity to see a ring of Saturn ten metres in diametre, sunspots like no one else can do better, Zodiacal Light as evocative as the natural one and, finally, auroras… four metres in diametre. The same sphere will serve as Saturn, the sun, and Earth, and will be driven round by a motor.’

So, aside from conjuring up images somewhere between Frankenstein, City of Lost Children and Batman, perhaps, Birkeland’s mountaintop cosmogonic laboratory brings up the interesting possibility of modeling – even reproducing – the universe through architecture. Or, at least, through a combination of architecture and machinery (which is what architecture always was in the first place).

In any case, clue the United States Department of Energy in on this and you’ll – wait: they’ve already done it. It’s called Yucca Mountain.

Perhaps a subterranean tour of the carved radioactive vaults of Yucca Mountain will be available to someone in a few ten-thousand years. By which time Birkeland’s almost H.P. Lovecraftian visions of simulating the birth of the universe atop a granite mountaintop, beneath a copper dome, will be long forgotten.

Oh, one more thing – in fact, two more things: 1) note that cathode rays, which Birkeland used in his vacuum chambers, are also what make non-digital television possible (raising the intellectually stimulating idea that television, in and of itself, as a technical object, is a model of the cosmos); and 2) note that Birkeland says ‘next to God, I have the greatest vacuum chamber’, implying of course that the universe already is a vacuum chamber, in which case one could argue – at least rhetorically – that we are living not in the universe as such but in what is already the experimental reproduction of the universe, a universe which lies elsewhere. The universe itself, then, the universe we run tests on and live within, is just a model, a prototype even. But that’s neither here nor there…