Cetacean Surroundsound

I was thinking about this whale song bunker idea the other week after reading about the potential for whale song to be used as a form of deep-sea seismic sensing. That original project—with no actual connection to the following news story—proposed using a derelict submarine surveillance station on the coast of Scotland as a site for eavesdropping on the songs of whales.

[Image: An otherwise unrelated image of whales, courtesy Public Domain Review.]

In a paper published in Science last month, researchers found that “fin whale songs can also be used as a seismic source for determining crustal structure. Fin whale vocalizations can be as loud as large ships and occur at frequencies useful for traveling through the ocean floor. These properties allow fin whale songs to be used for mapping out the density of ocean crust, a vital part of exploring the seafloor.”

The team noticed not only that these whale songs could be picked up on deep-sea seismometers, but that “the song recordings also contain signals reflected and refracted from crustal interfaces beneath the stations.” It could be a comic book: marine geologists teaming up with animal familiars to map undiscovered faults through tectonic sound recordings of the sea.

There’s something incredibly beautiful about the prospect of fin whales swimming around together through the darkness of the sea, following geological structures, perhaps clued in to emerging tectonic features—giant, immersive ambient soundscapes—playfully enjoying the distorted reflections of each other’s songs as they echo back off buried mineral forms in the mud below.

I’m reminded of seemingly prescient lyrics from Coil’s song “The Sea Priestess”: “I was woken three times in the night / and asked to watch whales listen for earthquakes in the sea / I had never seen such a strange sight before.”

Someday, perhaps, long after the pandemic has passed, we’ll gather together in derelict bunkers on the ocean shore to tune into the sounds of whales mapping submerged faults, a cross-species geological survey in which songs serve as seismic media.

Structural Audio

[Image: Photographer unknown; spotted via Medium.]

A design constraint I would sometimes use while teaching was to throw in an unexpected change to the project brief: this cluster of buildings you’re designing is now sponsored by Netflix, REI, Philips, etc. The point would be to think about how this might affect the resulting project—its streets designed as an open-air prototype of smart-lighting techniques, say, or an office campus now featuring climbing walls, artificial rivers, or small-group cinema projection booths. (In turn, the purpose of this was simply to remain flexible as one pushes ahead on a particular assignment.)

The prospect that always seemed one of the most interesting to me, though, was a company such as Dolby Laboratories: an audio services firm who might sponsor or commission an entire building or suburb, a new community somewhere designed for how it sounds. Six new houses pop up down the street from you next year and they’re a cross-platform collaboration not in high-end embedded speakers and such like, but in actual structural audio, like Joel Sanders’s Mix House scaled up.

For example, recall Nate Berg’s piece on the design history of roadside noise barriers. Although there is an almost Coen Brothers-like comical subplot to Berg’s story—as industries throughout Los Angeles, from homebuilders to classical music performers to Hollywood film studios, confronted the deafening and ever-growing roar of all the damn freeways being constructed everywhere, like some urban-scale act of self-inflicted hearing impairment, people screaming on telephones, What?!, no one sleeping at night, a city gone insane—the primary takeaway is simply that overwhelming sound sources inspire structural changes elsewhere. You build a freeway, in other words, then someone will build that freeway’s acoustic opposite, a shield or dampener.

In any case, it was thus interesting to read about what the New York Times calls “a pair of giant noise-canceling headphones for your apartment” designed by researchers in Singapore.

The system uses a microphone outside the window to detect the repeating sound waves of the offending noise source, which is registered by a computer controller. That in turn deciphers the proper wave frequency needed to neutralize the sound, which is transmitted to the array of speakers on the inside of the window frame.

The speakers then emit the proper “anti” waves, which cancel out the incoming waves, and there you have it: near blissful silence.

If you read the full New York Times piece, it seems clear that the system currently has several drawbacks: it is visually ungainly, for example, it cannot counter human voices, and it still lets in a lot of sound.

Nevertheless, the idea of a new building, town, or entire city offering its residents sonic amenities beyond just Bang & Olufsen speakers or similar seems long overdue. For that matter, combine luxury frequency-reduction techniques with seismic wave-mitigation and perhaps you’ve just designed the future of architecture in global earthquake zones. At the very least, someone’s living room will sound better at night.

(Related: Body Sonic / Coronavirus Surroundsound.)

Terrestrial Oceanica

I’m grateful for two recent opportunities to publish op-eds, one for the Los Angeles Times back in May and the other just this morning in the New York Times. Both look at seismic activity and its poetic or philosophical implications, including fault lines as sites of emergence for a future world (“A fault is where futures lurk”).

They both follow on from the Wired piece about the Walker Lane, as well as this past weekend’s large earthquakes here in Southern California.

The L.A. Times op-ed specifically looks at hiking along fault lines, including the San Andreas, where, several years ago, I found myself walking alone at sunset, without cell service, surrounded by tarantulas. I was there in the midst of a “tarantula boom,” something I did not realize until I checked into a hotel room and did some Googling later that evening.

In any case, “Faults are both a promise and a threat: They are proof that the world will remake itself, always, whether we’re prepared for the change or not.”

The New York Times piece explores the philosophical underpinnings of architecture, for which solid ground is both conceptually and literally foundational.

The experience of an earthquake can be destabilizing, not just physically but also philosophically. The idea that the ground is solid, dependable—that we can build on it, that we can trust it to support us—undergirds nearly all human terrestrial activity, not the least of which is designing and constructing architecture… We might say that California is a marine landscape, not a terrestrial one, a slow ocean buffeted by underground waves occasionally strong enough to flatten whole cities. We do not, in fact, live on solid ground: We are mariners, rolling on the peaks and troughs of a planet we’re still learning to navigate. This is both deeply vertiginous and oddly invigorating.

To no small extent, nearly that entire piece was inspired by a comment made by Caltech seismologist Lucy Jones, who I had the pleasure of interviewing several years ago during a Fellowship at USC. At one point in our conversation, Jones emphasized to me that she is a seismologist, not a geologist, which means that she studies “waves, not rocks.” Waves, not rocks. There is a whole new way of looking at the Earth hidden inside that comment.

Huge thanks, meanwhile, to Sue Horton and Clay Risen for inviting me to contribute.

(Images: (top) Hiking at the San Andreas-adjacent Devil’s Punchbowl, like a frozen wave emerging from dry land. (bottom) A tarantula walks beside me at sunset along the San Andreas Fault near Wallace Creek, October 2014; photos by BLDGBLOG.)

Walker Lane Redux

It’s been an interesting few days here in Southern California, with several large earthquakes and an ensuing aftershock sequence out in the desert near Ridgecrest. Ridgecrest, of course, is at the very southern edge of the Walker Lane—more properly part of the Eastern California Shear Zone—a region of the country that runs broadly northwest along the California/Nevada state border that I covered at length for the May 2019 issue of Wired.

[Image: My own loose sketch of the Walker Lane, using Google Maps].

To make a story short, a handful of geologists have speculated, at least since the late 1980s, that the San Andreas Fault could actually be dying out over time—that the San Andreas is jammed up in a place called the “Big Bend,” near the town of Frazier Park, and that it is thus losing its capacity for large earthquakes.

As a result, all of that unreleased seismic strain has to go somewhere, and there is growing evidence—paleoseismic data, LiDAR surveys, GPS geodesy—that the pent-up strain has been migrating deep inland, looking for a new place to break.

That new route—bypassing the San Andreas Fault altogether—is the Walker Lane (and its southern continuation into the Mojave Desert, known as the Eastern California Shear Zone).

What this might mean—and one of the reasons I’m so fascinated by this idea—is that a new continental margin could be forming in the Eastern Sierra, near the California/Nevada state border, a future line of breakage between the Pacific and North American tectonic plates.

If this is true, the Pacific Ocean will someday flood north from the Gulf of California all the way past Reno—but, importantly, this will happen over the course of many millions of years (not due to one catastrophic earthquake). This means that no humans alive today—in fact, I would guess, no humans at all—will see the final result. If human civilization as we know it is roughly 15,000 years old, then civilization could rise and fall nearly 700 times before we even get to 10 million years, let alone 15 million or 20.

In any case, these recent big quakes out near Ridgecrest do not require that the most extreme Walker Lane scenario be true—that is, they do not require that the Walker Lane is an incipient continental margin. However, they do offer compelling and timely evidence that the Walker Lane region is, at the very least, more seismically active than its residents might want to believe.

I could go on at great length about all this, but, instead, I just want to point out one cool thing: the far northern route of the Walker Lane remains something of a mystery. If you’ve read the Wired piece, you’ll know that, for the Walker Lane to become a future continental edge, it must eventually rip back through California and southeastern Oregon to reach the sea. However, the route it might take—basically, from Pyramid Lake to the Pacific—is unclear, to say the least.

One place that came up several times while I was researching my Wired article was the northern California town of Susanville. Susanville is apparently a promising place for study, as geologists might find emergent faults there that could reveal the future path of the Walker Lane.

If you draw a straight line from the Reno/Pyramid Lake region through Susanville and keep going, you’ll soon hit a town called Fall River Mills. Interestingly, following the long aftershock sequence of these Ridgecrest quakes, there was a small quake in Fall River Mills this morning.

While seeing patterns in randomness—let alone drawing magical straight lines across the landscape—is the origin of conspiracy theory and the bane of serious scientific thinking, it is, nevertheless, interesting to note that the apparently linear nature of the Walker Lane could very well continue through Fall River Mills.

[Image: The Ridgecrest quakes and their aftershocks seem to support the idea of a linear connection along the Walker Lane; note that I have added a straight orange line in the bottom image, purely to indicate the very broad location of the Walker Lane].

While we’re on the subject, it is also interesting to see that, if you continue that same line just a little bit further, connecting Pyramid Lake to Susanville to Fall River Mills, you will hit Mt. Shasta, an active volcano in northern California. Again, if you’ve read the Wired piece, you’ll know that volcanoes seem to have played an interesting role in the early formation of the San Andreas Fault millions of years ago.

In any case, in cautious summary, I should emphasize that I am just an armchair enthusiast for the Walker Lane scenario, not a geologist; although I wrote a feature article about the Walker Lane, I am by no means an expert and it would be irresponsible of me to suggest anything here as scientific fact. It does interest me, though, that aftershocks appear to be illuminating a pretty dead-linear path northwest up the Walker Lane, including into regions where its future route are not yet clear.

Insofar as the locations of these aftershocks can be taken as scientifically relevant—not just a seismic coincidence—the next few weeks could perhaps offer some intriguing suggestions for the Walker Lane’s next steps.

Gold Fault Laser

[Image: Drawing courtesy Geothermal Futures Lab].

In the general chaos of renovating a house here in Los Angeles, I missed this lecture and reception on Friday night, launching a semi-fictional “Geothermal Futures Lab” at SCI-Arc.

It involves installing a gold-plated laser somewhere deep in the San Andreas Fault to extract geothermal energy from the landscape. Think of it as a kind of gonzo version of the San Andreas Fault Observatory at Depth.

[Image: Drawing courtesy Geothermal Futures Lab].

The press release, from architect Mark Foster Gage, is a great example of a solipsistic inventor’s imagination at full blast—featuring “geothermal resonance technologies,” nano-gold foil-wrapped laser components, an “experimental phenolic cured resin foam,” and so on.

The functioning of the equipment would also rely, at least partially, on existing “metal deposits along the strike-slipping continental plates,” bringing to mind both the naturally occurring nuclear reactors in Gabon and the giant Earth-battery cells circulating beneath the forests of central Canada: landscapes whose geochemistry lends them to these sorts of giant, speculative energy installations.

Or see Norway’s extraordinary Hessdalen lights, a geologically electrified valley that seems ripe for a Mark Foster Gage-like architectural-energy proposal.

In all these cases, of course, what’s also worth noting is that, as fantastic as this sort of facility might seem—whether it’s a lab extracting electrical energy from the San Andreas Fault, as Foster Gage suggests, or one positioned above geochemical differentials in the Canadian soil—as soon as the power it supplies can be made available through the national grid, it would immediately pass from some sort of absolutely bonkers sci-fi vision of the near-future to, frankly, something utterly mundane. It would simply be where the power comes from, and people would shrug it off as a mere utility (if they think about it at all).

But what this also means is that we might already, right now, be missing out on seeing the truly otherworldly nature of our own power-generation facilities, which have all too easily disappeared into the infrastructural background of the modern world. Science fiction is already here, in other words, we just tend to refer to it as infrastructure. See, for example, Crescent Dunes or PS10. Or, for that matter, take a harder look at oil.

[Images: Drawings courtesy Geothermal Futures Lab].

In any case, here’s a sample from the project text, obligatory typos and all:

The exhibited technology capitalizes on the unique tungsten-saturated substrate of the San Andres fault through the use of a visible-light Q-switched Nd:YAG lasers, tuned to extract sustainable magno-electrical energy from a +678 degree Kelvin supercritical water deposits located adjacent to a stable magma chamber 4.4km beneath the Earths surface. This supercritical water, that behaves both as liquid and gas, is vaporized through 3,780 Kelvin bursts which at peak power induce a supercritical matter state releasing energy in exponential excess of its matter equivalent. The presence of heterogeneous frequency fields in metal deposits along the strike-slipping continental plates supercharges the pockets of supercritical water with magnetic nuons which are forced upwards with velocity µ as a result of the pressure gradient along the vertical faults. Due to the variable decay rate of metals in the presence of such high trajectory nuons, the prototype laser resonance mechanism itself is encased in an experimental phenolic cured resin foam (Cas no. 000050-00-0 with a normal specific gravity of 120 kg/m3) which insulates the process from outside magnetic interference. For rapid nuon decay protection the foam resin is additionally coated with the same seven µm micrometer nano-gold foil used to encase existing NASA satellites. This thick film of gold nano-molecules particles gives the machine its striking gold aesthetic appearance.

A nuon-resistant radiant machine buried in the San Andreas Fault, extracting energy from the friction between tectonic plates? With lasers? Yes, please.

[Images: Drawings courtesy Geothermal Futures Lab].

The exhibition itself is up until March 4; stop by SCI-Arc to see more or check out the project’s website.

(Earlier on BLDGBLOG: San Andreas: Architecture for the Fault. Thanks to Wayne Chambliss and Eva Barbarossa for the heads up!)

Tree Rings and Seismic Swarms

[Image: An otherwise unrelated print of tree rings from Yellowstone National Park, by LintonArt; buy prints here].

The previous post reminded me of an article published in the December 2010 issue of Geology, explaining that spikes in carbon dioxide released by subterranean magma flows beneath Yellowstone National Park have been physically recorded in the rings of trees growing on the ground above.

What’s more, those pulses of carbon dioxide corresponded to seismic events, as the Earth moves and gases are released, with the effect that the trees themselves can thus be studied as archives of ancient seismic activity.

“Plants that grow in areas of strong magmatic CO2 emissions fix carbon that is depleted in [Carbon-14] relative to normal atmosphere, and annual records of emission strength can be preserved in tree rings,” we read. “Yellowstone is a logical target” for a study such as this, the authors continue, “because its swarm seismicity and deformation are often ascribed to buildup and escape of high-pressure magmatic fluids.” The release of gases affects tree growth, which is then reflected in those trees’ rings.

I’ve written before about how tree rings are also archives of solar activity. See this quotation from the book Earth’s Magnetism in the Age of Sail, by A.R.T. Jonkers, for example:

In 1904 a young American named Andrew Ellicott Douglass started to collect tree specimens. He was not seeking a pastime to fill his hours of leisure; his motivation was purely professional. Yet he was not employed by any forestry department or timber company, and he was neither a gardener not a botanist. For decades he continued to amass chunks of wood, all because of a lingering suspicion that a tree’s bark was shielding more than sap and cellulose. He was not interested in termites, or fungal parasites, or extracting new medicine from plants. Douglass was an astronomer, and he was searching for evidence of sunspots.

Slicing open trees, searching for evidence of sunspots. This is a very peculiar—and awesomely poetic—form of astronomy, one locked inside objects all around us.

In the case of the Yellowstone study, a particular seismic swarm, one that hit the region back in 1978, apparently left measurable traces in the wood rhythms of local tree ring growth—in other words, surface-dwelling organisms in the Park were found to bear witness, in their very structure, to shifts occurring much deeper in the planet they live upon. They are measuring sticks of subterranea.

Combine this, then, with Andrew Ellicott Douglass’s work, and you’ve got tree rings as strange indicators of worlds hidden both below and far away: scarred by subterranean plumes of asphyxiating gas and marked by the variable burning of nearby stars. They are telescopes and seismometers in one, tools through which shifts in the sun and in the Earth’s own structure can be painstakingly divined.

Shocked to discover “they were living in ‘hill country’”

MysteriousUpswelling[Image: “Mysterious upswelling of Opp street above curb, Wilmington (1946),” courtesy USC Libraries].

In 1946, a “mysterious upswelling” occurred in a street in the neighborhood of Wilmington, California, near Long Beach. The photograph above, courtesy of the USC Libraries, pictures a young boy who went outside to measure it.

As part of an irregular series of short posts for KCET’s Lost L.A.—about things like Los Angeles partially illuminated by the light of an atomic bomb—I wrote a quick piece, inspired both by the photo itself and by its caption. “Surprising uprising,” it begins. “George Applegate measures mysterious swelling of Opp Street in Wilmington. Residents were shocked yesterday morning to discover they were living in ‘hill country.’ Street is seven inches above the curbing. Officials are investigating.”

Although I don’t mention this in the KCET post, I was instantly reminded of terrain deformation grenades and the instant, pop-up landforms of an old LucasArts game called Fracture. There, specialized weapons are put to use, tactically reshaping the earth’s surface, resulting in “mysterious upswellings” such as these.

There could be hills anywhere in Los Angeles, we might infer from this, lying in wait beneath our streets and sidewalks, prepping themselves for imminent exposure,” I write over at KCET. “A street today is a mountain tomorrow.”

(Also related: The previous post, Inland Sea).

Inland Sea

For two closely related projects—one called L.A.T.B.D., produced for the USC Libraries, and the other called L.A. Recalculated, commissioned by the 2015 Chicago Architecture Biennial, both designed with Smout Allen—I wrote that Los Angeles could be approached bathymetrically.

Los Angeles is “less a city, in some ways, than it is a matrix of seismic equipment and geological survey tools used for locating, mapping, and mitigating the effects of tectonic faults. This permanent flux and lack of anchorage means that studying Los Angeles is more bathymetric, we suggest, than it is terrestrial; it is oceanic rather than grounded.”

pendulums
[Image: Underground seismic counterweights act as pendulums, designed to stabilize Los Angeles from below; from L.A. Recalculated by Smout Allen and BLDGBLOG].

Because of seismic instability, in other words, the city should be thought of in terms of depths and soundings, not as a horizontal urban surface but as a volumetric space churning with underground forces analogous to currents and tides.

This bathymetric approach to dry land came to mind again when reading last month that the land of Southern California, as shown by a recent GPS study, is undergoing “constant large-scale motion.”

It is more like a slow ocean than it is solid ground, torqued and agitating almost imperceptibly in real-time.

“Constant large-scale motion has been detected at the San Andreas Fault System in Southern California,” we read, “confirming movement previously predicted by models—but never before documented. The discovery will help researchers better understand the fault system, and its potential to produce the next big earthquake.”

fault
[Image: “Vertical velocities” along the San Andreas Fault; via Nature Geoscience].

This is true, of course, on a near-planetary scale, as plate tectonics are constantly pushing land masses into and away from one another like the slow and jagged shapes of an ice floe.

But the constant roiling motion of something meant to be solid is both scientifically fascinating and metaphorically rich—eliminating the very idea of being grounded or standing on firm ground—not to mention conceptually intriguing when put into the context of architectural design.

That is, if architecture is the design and fabrication of stationary structures, meant to be founded on solid ground, then this “constant large-scale motion” suggests that we should instead think of architecture, at least by analogy, more in terms of shipbuilding or even robotics. Architecture can thus be given an altogether different philosophical meaning, as a point of temporary orientation and solidity in a world of constant large-scale surges and flux.

Put another way, the ground we rely on has never been solid; it has always been an ocean, its motion too slow to perceive.

Curbed

10-HaywardCornerWEB[Image: Photo by Geoff Manaugh].

Lacking any sort of seismically-themed historic preservation plan, this seemed all but inevitable: a city works crew has fixed, and thus destroyed, the amazing offset curb at the intersection of Rose and Prospect in Hayward, California, where seismic “creep” has been inadvertently tracked for decades.

From the L.A. Times:

Since at least the 1970s, scientists have painstakingly photographed the curb as the Hayward fault pushed it farther and farther out of alignment. It was a sharp reminder that someday, a magnitude 7 earthquake would strike directly beneath one of the most heavily populated areas in Northern California.
Then, one early June day, a city crew decided to fix the faulty curb—pun intended. By doing what cities are supposed to do—fixing streets—the city’s action stunned scientists, who said a wonderful curbside laboratory for studying earthquakes was destroyed.

As you can see here, small black lines had been drawn on the curb as a visual aid for helping measure exactly how far its opposing sides had been displaced by so-called “fault creep.”

11-HaywardCornerWEB[Image: Photo by Geoff Manaugh].

The curb on the west is moving north—along with the rest of that part of Hayward, California—while the curb on the east basically marks the edge of a different tectonic plate.

I was there roughly two years ago, looking at fault creep up and down California—primarily along the San Andreas Fault—when I took these shots; at the time, I wrote that the intersection could be thought of as “something like an alternative orientation point for the city, a kind of seismic meridian—or perhaps doomsday clock—by which Hayward’s ceaseless cleaving can be measured.”

CurbsTwoWEBCurbsWEB[Images: Photos by Geoff Manaugh].

Alas, we’ll have to wait presumably until the 2050s before the curbs offset to anything like they were when these photographs were taken.

(Thanks to Wayne Chambliss for the heads up!)

Dolby Earth / Tectonic Surround-Sound

“In any given instant,” the Discovery Channel reminds us, “one or more rocky plates beneath Earth’s surface are in motion, and now visitors to a California museum exhibit can hear virtually every big and small earthquake simultaneously in just a few seconds off real time. Scientists have captured earthquake noises before, but this is believed to be the first instantaneous, unified recording of multiple global tectonic events, and it sounds like the constant, dull roar of the world’s biggest earthquake chorus.”

The planet, droning like a bell in space.

Of course, the musicalization of the earth’s tectonic plates has come up on BLDGBLOG before, specifically in the context of 9/11 and the collapse of the Twin Towers. Among many other things, 9/11 was an architectural event which shook the bedrock of Manhattan; the resulting vibrations were turned into a piece of abstract music by composer Mark Bain (more info at the Guardian – and you can listen to an excerpt here).

Meanwhile, if somebody set up a radio station – perhaps called Dolby Earth – permanently dedicated to realtime platecasts of the earth’s droning motions… at the very least I’d be a dedicated listener. A glimpse of what could have been: Earth: The Peel Sessions.

In any case, if I could also remind everyone here of an interview with David Ulin, in which he discusses the intellectual and philosophical perils of earthquake prediction – the topic of his excellent book, The Myth of Solid Ground. One of the predictors discussed in Ulin’s book, for instance, spends his time “monitoring a symphony of static coming from an elaborate array of radios tuned between stations at the low end of the dial.”

Dolby Earth, indeed.

(Thanks to Alex P. for the Discovery Channel link! Related: Sound Dunes).