As if all contemporary buildings have tinnitus: An Interview with Sabine von Fischer

[Image: “A tapping machine used in tests to evaluate the ability of floor coverings to reduce the transmission of impact sound from one floor to another in multi-family dwellings. Courtesy of the National Research Council Canada/Conseil national de recherches Canada,” via CCA].

[Nearly a decade ago, I wrote a series of blog posts as part of a Fellowship at the Canadian Centre for Architecture. Those posts appear to be falling into an internet memory hole, so I thought I’d reproduce lightly edited versions of some of them here, simply for posterity.]

Sabine von Fischer is an architectural historian with a specific interest in acoustics. Both Von Fischer and I were Fellows at the Canadian Centre for Architecture in the summer of 2010, where she was “researching the relationship between architecture and sound for a Ph.D.”

I was fascinated by the work she presented one afternoon during a lecture, and, later that week, I caught up with Von Fischer for a brief Q&A about her work. The following interview was originally published in 2010.

* * *

BLDGBLOG: In the most general terms, what is the topic of your dissertation?

Sabine von Fischer: The Ph.D. will be a history of 20th century architecture, with sound being the filter through which I want to look at different spatial configurations, building technologies, and the mutual effect of technologies and architecture on each other. The period that I am looking at is 1930-1970; this was a period when drastic changes in acoustic technology happened that continue to impact our environment today.

BLDGBLOG: Why do you begin in 1930?

Von Fischer: 1930 was the first publication of the tapping machine—that’s my case study for building acoustics. The 1970 date is maybe a little more vague—it’s a nice even number! But if I find other events, I might change it to 1971. [laughs]

BLDGBLOG: What was the tapping machine [seen in the image above]?

Von Fischer: The tapping machine, as it was first published in 1930 and as it was standardized in the 1960s, has five steel rods that hammer against the floor. The speed has changed a bit over time—and its speed is now standardized—but it just tramples on the floor. It’s a very basic machine.

The principle of the machine can be found in older apparatuses, such as those used in grinding food items, but this particular application was to simulate the sound of footsteps, furniture, and machines on the floors of multi-story buildings. In this form—with five hammers, which are electrically operated—it was first published in 1930, in the Journal of the Acoustical Society of America.

Everyone who has been working on building acoustics claims that, since 1923 or 1926, they’ve been doing similar tests on structure-borne sound, but almost all of those earlier tests were done with women in high-heeled shoes. High- heeled shoes make a very distinct sound. For impact-sound measurements, these women—and I have never seen a photo with a man or a documentation of a test done with a man—would wear high-heeled shoes, making a very standard noise.

Obviously, there have been comparative tests with men wearing different-soled shoes, evaluating the different ways of walking—or people who are very heavy, who produce different frequencies in the floor—but the National Bureau of Standards, in the period between the wars, had ladies in high-heeled shoes walking around inside buildings.

BLDGBLOG: Did the tapping machine put those women out of work, or was it used in parallel?

Von Fischer: I think they were replaced by the machine—but, then, people came back in over the last decades, mostly for measuring sound inside the same spaces. Because, once there is sound insulation in the floor, there’s a new problem: sound gets thrown back into the room. It’s not transmitted into the lower floors; it wanders around the same room. Especially with laminated flooring, there can be a strange sound when people are walking inside their own spaces. To test that, it’s done with people; the tapping machine wouldn’t simulate it well enough.

BLDGBLOG: I’m reminded of Nightingale floors in Japan: deliberately squeaky floors installed as a security measure against ninjas and assassins. The idea was to make the floor as acoustically noticeable as possible, rather than to mitigate its sonic properties.

Von Fischer: In Indian culture, as well, there’s a related example, where often the lady of the house would have a ring on her toes so that the other people in the house would know when she’s approaching. Different cultures have different traditions of using sound to mark someone’s presence in a building.

BLDGBLOG: Going back to your Ph.D. research, can you explain your idea of the “clairaudient building”?

Von Fischer: The “clairaudient building” is a metaphor, because normally you would say that a person is clairaudient.

BLDGBLOG: It’s like clairvoyant—clairaudient is a kind of supernatural “all-hearing”?

Von Fischer: Yes, I am using “clairaudience” to refer to early and post-war modern building systems, which transmitted sounds much more than any traditional way of building, creating problems that were unheard of before. Then, the word clairaudience, to me, also spans all of the technological machines and apparatuses that are used to broadcast sound inside architecture—speakers, microphones, intercoms, all the way up to surveillance systems and equipment. So buildings became clairaudient through technology.

BLDGBLOG: In that sense, a clairaudient building would be a space of total acoustic transparency?

Von Fischer: Yes, and I also think acoustic transparency is a quality of ambience—what became known as the “atmosphere” of a space. Very often, for example, you can observe that once rooms are silenced, other sounds are introduced artificially because, in the end, total silence doesn’t feel comfortable.

BLDGBLOG: That’s interesting—as someone who has very bad tinnitus, I need to have some kind of noise playing at night or I can’t go to sleep. So my wife—I hope!—has gotten used to the fact that we have to have fans on, even in the middle of winter, and sometimes more than one. But what’s interesting about tinnitus is that a silent room is not necessarily socially uncomfortable—in the sense that you need to think of something to say to the people around you—but, speaking only for myself, it can be acoustically uncomfortable. I can actually feel dizzy sometimes when it’s totally silent due to all the ringing in my ears.

Von Fischer: I would say that the term tinnitus can also be applied to buildings and to cities in general. I think sounds in cities and buildings have moved from being distinct signals, or individual sounds, to a constant background. There is often not one loud noise, but a mélange or a multiplicity of dampened—yet still audible—machines.

This will sound too harsh, but it’s as if all contemporary buildings have tinnitus. That’s an image I want to work on—a pathological metaphor for the state of sound in architecture.

[Image: Sulzer air-conditioning ad, ca. 1958, courtesy Sabine von Fischer/CCA].

BLDGBLOG: In your presentation you showed a photo of a man sitting at a desk, smoking a cigarette, listening to the sound of his air conditioner.

Von Fischer: Well, this is from 1958, a man being bothered by his air conditioner! The ad suggests that he should buy a new model because it’s more silent.

I’m fascinated by that image, because it visualizes the constant quest for new technologies that we need simply to make up for the downsides of the previous new technology. For instance, once rooms were air-conditioned, there was the sound of the air conditioner that we had to make up for; and, I assume, this new air conditioner in 1958 was not as silent as we are used to now—and, even today, air conditioners are not silent at all.

BLDGBLOG: The example of air conditioner noise points to an interesting line between the equipment of everyday domesticity—refrigerators, ceiling fans, air conditioning units, even tea kettles—and what could be called proto-musical instruments. They are things that you can tune to make the world quieter or more melodious.

Von Fischer: That’s definitely something I am interested in, although I think that this specific kind of sound design is something that only came after 1970.

It’s all a question of attitudes or personal taste, so tuning everyday objects can be a quite difficult enterprise. There will never be a consensus on what a good sound is. That’s why the noise regulations in cities are so rigid, because there are so many different reactions and compromises in order to avoid being a nuisance to someone.

Different sounds can also mean different things. Lawnmowers are always loud because, if a lawnmower was very quiet, maybe people wouldn’t buy it for fear that a quiet lawnmower isn’t strong enough. And men’s shavers are much louder than ladies’ shavers, even though they do the same thing. There are a bunch of products around us that are already heavily sound-designed.

BLDGBLOG: Even police sirens are being redesigned. In New York City, for instance, a new siren called the “Rumbler” was introduced last autumn that uses subwoofers and heavy bass to cut through urban noise (and through the music you might be listening to in your car). It’s like sonic warfare—noise v. noise.

Von Fischer: There was also a project by Max Neuhaus, from the 1970s, where he designed new sirens for emergency vehicles in New York City. His contention was that drivers and pedestrians in the city could not locate where the existing siren sounds were coming from. You would hear a siren somewhere but not know where it was. So he designed a better sound that, he claimed, you could hear which direction it was coming from. He invested a lot in the project, and I think he was quite frustrated when it never made it into the actual system.

BLDGBLOG: Finally, when it comes to specific resources here at the CCA, are you here more for the research & writing time, or is there a specific object or text in the archives that you came to see?

Von Fischer: It’s primarily to have the freedom to really think and focus, but there are things that I want to look at. The archive here is very strong in post-war visionary projects, and I’m looking at their ideas of utopia and the role of technology in buildings and interiors. I’m interested in the audio component of the social utopias of the 1960s—to see what role sound played in projects of this period. One famous example would be François Dallegret’s illustrations for Reyner Banham’s text “A Home is not a House” from 1965.

Hospital Interiors / Dolby Suburbs

[Image: “Mix House” by Joel Sanders Architect, Karen Van Lengen/KVL, and Ben Rubin/Ear Studio].

Between cross-country moves, book projects, wild changes in the online media landscape over the past few years, and needless self-competition through social media, my laptop has accumulated hundreds and hundreds, arguably thousands, of bookmarks for things I wanted to write about and never did. Going back through them all feels like staring into a gravesite at the end of a life I didn’t realize was mortal.

For example, the fact that the scent of one of Saturn’s moons was created in a NASA lab in Maryland—speculative offworld perfumery—and that, who knows, it could even someday be trademarked. Or that mountain-front suburban homes in Colorado were unwittingly constructed over mines designed to collapse—and that of the mines have already begun to do so, taking surface roads along with them. Or the sand mines of central Wisconsin. Or the rise of robot-plant hybrids. Or the British home built around a preserved railway carriage “because bizarre planning regulations meant the train could not be moved”—a vehicle frozen into place through architecture.

In any case, another link I wanted to write about many eons ago explained that legendary producer and ambient musician Brian Eno had been hired to design new acoustics for London’s Chelsea and Westminster hospital, part of an overall rethinking of their patient-wellness plan. Healing through sound. “The aim,” the Evening Standard explained, “is to replicate techniques in use in the hospital’s paediatric burns unit, where ‘distraction therapy’ such as projecting moving images on to walls can avoid the need to administer drugs such as morphine.”

This is already interesting—if perhaps also a bit alarming, in that staring at images projected onto blank walls can apparently have the same effect as taking morphine. Or perhaps that’s beautiful, a chemical testament to the mind-altering potential of art amplified by modern electrical technology.

Either way, Eno was brought on board to “refine” the hospital’s acoustics, much as one would do for the interior of a luxury vehicle, and even to “provide soothing music” for the building’s patients, i.e. to write a soundtrack for architecture.

We are already in an era where the interiors of luxury cars are designed with the help of high-end acoustic consultants, where luxury apartments are built using products such as “acoustic plaster,” and where critical governmental facilities are constructed with acoustic security in mind—a silence impenetrable to eavesdroppers—but I remain convinced that middle-budget home developers all over the world are sleeping on an opportunity for distinguishing themselves. That is, why not bring Brian Eno in to design soothing acoustics for an entire village or residential tower?

Imagine a whole new neighborhood in Los Angeles designed in partnership with Dolby Laboratories or Bang & Olufsen, down to the use of acoustic-deflection walls and carefully chosen, sound-absorbing plants, or an apartment complex near London’s Royal Academy of Music with interiors acoustically shaped by Charcoalblue. SilentHomes™ constructed near freeways in New York City—or, for that matter, in the middle of nowhere, for sonically sensitive clients. Demonstration suburbs for unusual acoustic phenomena—like Joel Sanders et al.’s “Mix House” scaled up to suit modern real-estate marketers.

At the very least, consider it a design challenge. It’s 2020. KB Home has teamed up with Dolby Labs to construct a new housing complex covering three city blocks near a freeway in Los Angeles. What does it look—and, more to the point, what does it sound—like?

Northern Sonic

[Image: Canada’s Fury and Hecla Strait, source of the “ping”].

The “mysterious ‘ping’ sound” occurring beneath the waters of Canada’s Fury and Hecla Strait is now under official investigation.

“Hunters in a remote community in Nunavut are concerned about a mysterious sound that appears to be coming from the sea floor,” the CBC reported back in November. “The ‘pinging’ sound, sometimes also described as a ‘hum’ or ‘beep,’ has been heard in Fury and Hecla Strait—roughly 120 kilometres northwest of the hamlet of Igloolik—throughout the summer.” One of many concerns is that, “whatever the cause, it’s scaring the animals away.”

To find out exactly what it is, the Canadian military has sent “two acoustic specialists to investigate the sound.” Oddly, however, “the specialists will not be visiting the actual area of Fury and Hecla Strait, but rather spending a week in Igloolik to gather information about the sound.”

In any case, if this was a novel, I wish I had written it—with slight variations. Two acousticians, carrying sensitive recording equipment and some personal baggage, are sent at short notice up to a tiny fishing hamlet in the far north to investigate a mysterious sound in the water.

No one has any idea of what it is or what’s causing it. It could be a unique natural effect of changing undersea currents, oceanographers suggest; it could be an adversarial foreign power sonar-mapping the strait for future navigation, a military advisor warns; it could be, one of the acousticians quietly begins to fear, supernatural; but the two of them continue researching nonetheless, engaging in sometimes eerie nighttime conversations with locals about a wide range of northern folklore, of vast Lovecraftian things waiting in the ice to thaw and stories of now-vengeful, thousand-year-old revenant hunters lost at sea.

[Image: The hamlet of Igloolik, Canada, visible on the left].

The acousticians return to their spartan accommodations every evening—an old creaking building whose sole resident passed away the year before, although no one will tell them how—where they put on headphones and listen back through their daily recordings, this weird lurch of aquatic noise, as if they’ve wiretapped the drain of the world.

One of them becomes convinced he can hear something—a signal amongst the reverb—but the other can’t hear it, and, either way, it’s almost time to head south again.

A day before they’re set to leave, however, there is a commotion outside near the jetty as three people are rushed into the village. They are hypothermic and dehydrated—and, strangely, carrying U.S. passports despite the fact that one of them has been babbling in Russian. They were found in the strait, half-drowned, their fishing vessel sinking.

And so on. If you want to read the rest, buy me a coffee some time.

(Via Atlas Obscura).

Warsound

[Image: U.S. helicopter over Baghdad, via (scroll down)].

I’ve mentioned The Forever War by Dexter Filkins before, but I was struck again the other day by a passage in which Filkins catalogs the mechanically unprecedented sounds of the American siege of Falluja, a collection of noises so alien and overpowering that he describes it as “an entire ecosystem” with its own hidden predators and prey.

Filkins writes that “rocket-propelled grenades whizzed out of the darkness, striking the M-1s and exploding but doing no harm. Whoosh-bang, like a fireworks show. Whoosh-bang.” He quickly adds, however, that “the real weirdness was circling above.”

The night sky echoed with pops and pings, the invisible sounds of frantic action. Most were being made by the AC-130 gunships, whose propellers were putting out a reassuring hum. But over the droning came stranger sounds: the plane’s Gatling gun let out long, deep burps at volumes that were symphonic. Its 105mm cannon made a popping sound, the same as you would hear from a machine that served tennis balls. A pop! followed by a boom! Pop-boom. And then there was the insect buzz of the ScanEagle, the pilotless airplane that hovered above us and beamed images back to base. It was as if we were witnessing the violent struggles of an entire ecosystem, a clash of airborne nocturnal beasts we could not see.

Of course, the unnatural acoustic ecology of humans at war is surely something you could find throughout history, from the fibrous zing of crossbow strings and the thunderous lurch of the catapult to endlessly irritating scrapings of metal on metal as swords and shields collide. What ancient Roman warfare actually sounded like is something for the acoustic archaeologists.

But, while an acoustic history of war has yet to be written—though some have treated sound itself as war—it would be a fascinating study to pursue.

Sonic Warfare

The opening scene of The Forever War by Dexter Filkins presents us with the sight of U.S. soldiers preparing for their invasion of Falluja. Filkins is there to witness the attack; amidst the growl of tanks and Humvees, and “by the light of airstrikes and rockets,” he writes, there is suddenly something sonically unexpected.


[Image: “An Advanced Individual Training Soldier in the Psychological Operations Specialist Course attaches a loud speaker on top of a High Mobility Multi-Wheeled Vehicle, or HUMVEE, at Forward Operating Base Freedom, Camp MacKall, N.C.” Courtesy of the John F. Kennedy Special Warfare Center and School].

“And then, as if from the depths,” Filkins writes, “came a new sound: violent, menacing and dire.”

I looked back over my shoulder to where we had come from, into the vacant field at Falluja’s northern edge. A group of marines were standing at the foot of a gigantic loudspeaker, the kind used at rock concerts.

It was AC/DC, the Australian heavy metal band, pouring out its unbridled sounds. I recognized the song immediately: “Hells Bells,” the band’s celebration of satanic power, had come to us on the battlefield.

While by no means advocating the use of sonic warfare as a tool in U.S. military adventures or police operations, I nonetheless instantly thought of this scene—of armed soldiers holding aloft rock-blaring boom boxes, like some John Milius-directed remake of Say Anything—when I read, in a very different context, that bark beetles can be driven out of the pine forests they currently infest if you play digitally-altered sounds of their own chewing back at them through loud speakers. The high-volume sound of themselves drives them away.

A research assistant suggested using sounds to aggravate the beetles, much as police sometimes blare music in hostage situations. The researchers tried Queen and Guns N’ Roses and played snippets of radio talker Rush Limbaugh backward. None produced the desired results.

Then, the beetles were exposed to digitally altered recordings of their own calls, the sounds they make to attract or repel other beetles. The response was immediate. The beetles stopped mating or burrowing. Some fled, helter-skelter. Some violently attacked each other.

Most important, they stopped chewing away at the pine tree, suggesting that the scientists may have discovered a sort of sonic bullet that could help slow the beetles’ destructive march.

Again, I do not mean to imply that infestation metaphors are the most appropriate to use when discussing Operation Phantom Fury, or that military action in that city was analogous to clearing a forest of bark beetles; but the audio possibilities here, and the specifics of the set-up, seem amazing.


[Image: A ponderosa pine forest; within those trunks might be beetles].

More about the actual experiment, run at Northern Arizona University’s Forestry Lab:

They collected tree trunks infested with bark beetles… Working in the lab, [research assistant Reagan McGuire] piped in the music through tiny speakers, the sort you might find in a singing greeting card. He watched the reaction of the beetles using a microscope. The rock music didn’t seem to annoy the bugs, nor did Rush in reverse.

McGuire and [Northern Arizona University forest entomologist Richard Hofstetter] decided to try something different. They recorded the sounds of the beetles and played them back, manipulating them to test the response.

Suddenly, every little thing they did seemed to provoke the beetles.

“We could use a particular aggression call that would make the beetles move away from the sound as if they were avoiding another beetle,” Hofstetter said.

When they made the beetle sounds louder and stronger than a typical male mating call, he said, the female beetle rejected the male and moved toward the electronic sound.

These audio simulations, in other words, had demonstrable physical effects on another species; their own warped sonic portrait drove them crazy.

So could you reprogram your Marsona 1288A (“create a personalized sound environment“) with the digitally-altered ambient sounds of termites and thus clear your house of insectile pests? The USDA, after all, has published a paper—download the PDF—explaining how a “portable, low-frequency acoustic system was used to detect termite infestations in urban trees.” Indeed, “termite sounds could be detected easily underneath infested trees, despite the presence of high urban background noise.” So why not reverse this—drive them out of the city using weird MP3s specially produced for boom cars?

Perhaps we should petition Clear Channel or Sirius XM to premiere a new, insect-only broadcast hour, killing ants and roaches in every city where it’s played (or perhaps just driving them all out, streaming from the floorboards, in a moment of utter horror).

I’m reminded here of the famous example of Sgt. Pepper’s Lonely Hearts Club Band by The Beatles, with its “dog whistle—which humans can’t hear—buried on the album’s second side.” Only, in our case, it would be a different kind of beetle-whistle, and one with anti-infestational effects.

(Bark beetle story found via @treestrategist).

The exact acoustic shape of
the skies above Los Angeles

[Image: Photo by John Gay: an F/A-18 creates a condensation cone as it breaks the speed of sound].

An email was sent out last week from the Regional Public & Private Infrastructure Collaboration Systems (RPPICS) – an organization with no apparent web presence – warning many businesses in and around Los Angeles that city residents “could hear up to a dozen sonic booms this morning [June 11] as some NASA F/A-18 aircraft fly at supersonic speeds around Edwards Air Force Base.”

While the “loudness of the booms will vary,” we read, these are only “preliminary calibration flights for an upcoming NASA study” that will research how “to reduce the intensity of sonic booms.” Part of this will be studying “local atmospheric conditions,” including air pressure, wind speed, and humidity, as these all entail acoustic side-effects.

It’s a sonic cartography of the lower atmosphere: an echo-location exercise. The geometry of noise.

Sound-bombing L.A. from above in order to know the exact acoustic shape and structure of the sky.

Dolby Earth / Tectonic Surround-Sound

“In any given instant,” the Discovery Channel reminds us, “one or more rocky plates beneath Earth’s surface are in motion, and now visitors to a California museum exhibit can hear virtually every big and small earthquake simultaneously in just a few seconds off real time. Scientists have captured earthquake noises before, but this is believed to be the first instantaneous, unified recording of multiple global tectonic events, and it sounds like the constant, dull roar of the world’s biggest earthquake chorus.”

The planet, droning like a bell in space.

Of course, the musicalization of the earth’s tectonic plates has come up on BLDGBLOG before, specifically in the context of 9/11 and the collapse of the Twin Towers. Among many other things, 9/11 was an architectural event which shook the bedrock of Manhattan; the resulting vibrations were turned into a piece of abstract music by composer Mark Bain (more info at the Guardian – and you can listen to an excerpt here).

Meanwhile, if somebody set up a radio station – perhaps called Dolby Earth – permanently dedicated to realtime platecasts of the earth’s droning motions… at the very least I’d be a dedicated listener. A glimpse of what could have been: Earth: The Peel Sessions.

In any case, if I could also remind everyone here of an interview with David Ulin, in which he discusses the intellectual and philosophical perils of earthquake prediction – the topic of his excellent book, The Myth of Solid Ground. One of the predictors discussed in Ulin’s book, for instance, spends his time “monitoring a symphony of static coming from an elaborate array of radios tuned between stations at the low end of the dial.”

Dolby Earth, indeed.

(Thanks to Alex P. for the Discovery Channel link! Related: Sound Dunes).

Sound dunes

“Sand dunes in certain parts of the world are notorious for the noises they make,” New Scientist reports, “as sand avalanches down their sides. Some [dunes] emit low powerful booms, others sound like drum rolls or galloping horses, and some are even tuneful. These dune songs have been reported to last for up to 15 minutes and can sound as loud as a low-flying airplane.”

To test for the causes, properties, and other effects of these sand dune booms, “Stéphane Douady of the French national research agency CNRS and his colleagues shipped sand from Moroccan singing dunes back to his lab to investigate.” There, Douady’s team “found that they could play notes by pushing the sand by hand, or with a metal handle.”

The transformation of a sand dune – and, by extension, the entire Sahara desert, indeed any desert – even, by extension, the rust deserts of Mars – into a musical instrument. Music of the spheres, indeed.

“When the sand avalanches, the grains jostle each other at different frequencies, setting up standing waves in the cascading layer, says Douady. These waves reinforce one another, making the layer vibrate like the surface of a loud speaker. ‘What’s funny is that in these massive dunes, only a thin layer of 2 or 3 centimetres is needed to set up the resonance,’ says Douady. ‘Soon all grains begin to vibrate in step.'”

Douady has so perfected his technique of dune resonance that he has now “successfully predicted the notes emitted by dunes in Morocco, Chile and the US simply by measuring the size of the grains they contain.” The music of the dunes, in other words, was determined entirely by the size, shape, and roughness of the sand grains involved, where excessive smoothness dampened the dunes’ sound.

I’m reminded of the coast of Inishowen, a peninsula south of Malin Head in the north of Ireland, where the rocks endlessly grind across one another in the backwash of heaving, metallic, grey Atlantic waves. Under constant pressure of the oceanic, the rocks carve into themselves and each other, chipping down over decades into perfectly polished and rounded spheres, columns, and eggs – as if Archimedean solids or the nested orbits of Kepler could be discovered on the Irish ocean foreshore –

– all glittering. The rocks, I later learned, were actually semi-precious stones, and I had a kind of weird epiphany, standing there above the hush and clatter of bejewelled rocks, rubbing and rubbed one to the other in the depopulated void of a coastal November. It was not a sound easy to forget.

Because the earth itself is already a musical instrument: there is “a deep, low-frequency rumble that is present in the ground even when there are no earthquakes happening. Dubbed the ‘Earth’s hum‘, the signal had gone unnoticed in previous studies because it looked like noise in the data.”

Elsewhere: “Competing with the natural emissions from stars and other celestial objects, our Earth sings like a canary – it drones on in a constant hum of a gazillion notes. If it were several octaves higher, and hence, audible to the human ear,” it could probably get recorded by the unpredictably omnidirectional antennas of ShortWaveMusic and… you could download the sound of the earth. Free Radio Interterrestrial. [Note: the “drones on” link, a sentence or two back, offers a contrary theory (published in 2000) about the origins of these planetary sound waves.]

Which, finally, brings us to Ernst Chladni and his Chladni figures, or: architectonic structures appearing in sand due to patterns of acoustic resonance. The architecture of sand, involving sound—or architecture through sound, involving sand. Silicon assuming structure, humming.

The gist of Chladni’s experiments involved spreading a thin layer of sand across a vibrating plate, changing the frequency at which the plate vibrated, and then watching the sand as it shivered round, forming regular, highly geometric patterns. Those patterns depended upon, and were formed in response to, whatever vibration frequency it was that Chladni chose.

So you’ve got sand, dune music, terrestrial vibration, some Chladni figures – one could be excused for wondering whether the earth, apparently a kind of carbon-ironic bell made of continental plates and oceanic resonators, is really a vast Chladni plate, vibrating every little mineral, every pebble, every grain of sand, perhaps every organic molecule, into complex, three-dimensional, time-persistent patterns for which we have no standard or even technique of measurement. Or maybe William Blake knew how to do it, or Pythagoras, or perhaps even Nikola Tesla, but…

The sound dunes continue to boom and shiver. The deserts roar. The continents hum.