Forest Accumulator

Ten years ago, this would have been a speculative design project by Sascha Pohflepp: “hyper-accumulating” plants are being used to concentrate, and thus “mine,” valuable metals from soil.

[Image: Nickel-rich sap; photo by Antony van der Ent, courtesy New York Times.]

“With roots that act practically like magnets, these organisms—about 700 are known—flourish in metal-rich soils that make hundreds of thousands of other plant species flee or die,” the New York Times reported last week. “Slicing open one of these trees or running the leaves of its bush cousin through a peanut press produces a sap that oozes a neon blue-green. This ‘juice’ is actually one-quarter nickel, far more concentrated than the ore feeding the world’s nickel smelters.”

A while back, I went on a road-trip with Edible Geography to visit some maple syrup farms north of where we lived at the time, in New York City. The woods all around us were tubed together in a huge, tree-spanning network—“forest hydraulics,” as Edible Geography phrased it at the time—as the trees’ valuable liquid slowly flowed toward a pumping station in the center of the forest.

It was part labyrinth, part spiderweb, a kind of semi-automated tree-machine at odds with the image of nature with which most maple syrup is sold.

[Images: Photos by BLDGBLOG.]

Imagining a similar landscape, but one designed as a kind of botanical mine—a forest accumulator, metallurgical druidry—is incredible.

And it’s not even a modern idea, as the New York Times points out. For all its apparent, 21st-century sci-fi, the idea of harvesting metal from plants is at least half a millennium old: “The father of modern mineral smelting, Georgius Agricola, saw this potential 500 years ago. He smelted plants in his free time. If you knew what to look for in a leaf, he wrote in the 16th century, you could deduce which metals lay in the ground below.”

This brings to mind an older post here about detection landscapes, or landscapes—yards, meadows, gardens, forests—deliberately planted with species that can indicate what is in the soil beneath them.

In the specific case of that post, this had archaeological value, allowing researchers to find abandoned Viking settlements in Greenland based on slight chemical changes that have affected which plants are able to thrive. Certain patches of flower, for example, act as archaeological indicator species, marking the locations of lost settlements.

In any case, my point is simply that vegetation can be read, or treated as a sign to be interpreted, whether by indicating the presence of archaeological ruins or by revealing the potential market-value of a site’s subterranean metal content.

Indeed, we read, “This vegetation could be the world’s most efficient, solar-powered mineral smelters,” with “the additional value of enabling areas with toxic soils to be made productive. Smallholding farmers could grow on metal-rich soils, and mining companies might use these plants to clean up their former mines and waste and even collect some revenue.” That is, you could filter and clean contaminated soils by drawing heavy-metal pollutants out of the ground, producing saps that are later harvested.

Fast-forward ten years: it’s 2030 and landscape architecture studios around the world are filled with speculative metal-harvesting plant designs—contaminated landscapes laced with gardens of hardy, sap-producing trees—even as industrial behemoths, like Rio Tinto and Barrick Gold, are breeding proprietary tree species in top-secret labs, genetically modifying them to maximize metal uptake.

Weird saps accumulate in iridescent lagoons. Autumn leaves glint, literally metallic, in the sun. Tiny metal capillaries weave up the trunks of black-wooded trees, in filigrees of gold and silver. The occasional forest fire smells not of smoke, but of copper and tin. Reclaimed timber, with knots and veins partially metallized, is used as luxury flooring in suburban homes.

Read more at the New York Times.

(Thanks to Wayne Chambliss for the tip!)

The City’s Secret Ink

A short article up at The New Yorker follows the adventures of so-called “ink enthusiasts” as they seek new sources of pigment in New York City.

[Image: Via Flickr].

The author, Amy Goldwasser, tags along as the group wanders on “a five-hour foraging trip that would take them up to Hudson Heights, to collect foliage and trash, which they would cook, to make ink.”

By the time the foragers left Central Park, the pockets of [tour leader] Logan’s jacket were already bleeding pink. After finishing uptown, a few hours later, they went to [a participant’s] apartment, to make ink. One batch was pure pokeberry juice (vivid magenta). Another included five varieties of acorn boiled with rust from various sources—nuts and bolts, wire, brackets—and a drop of gum arabic. It came out a complicated silver-gray. Logan spread a range of ink pots on [the participant’s] kitchen table. He dipped the bottom of a glass jar into the rust-and-acorn ink and pressed it onto a piece of paper, making a silvery circle. “Look at our day,” he said. “Now, that, to me, is the blood of New York.”

The city’s capacity to leave marks—to stain, print, and tattoo the things and people that pass through it—can be found in the most mundane items, secret ink hidden inside “acorns, wild grapevines, beer caps, feathers, subway soot.”

Read more at The New Yorker.

(Vaguely related: Dumpster Honey).

Hospital Interiors / Dolby Suburbs

[Image: “Mix House” by Joel Sanders Architect, Karen Van Lengen/KVL, and Ben Rubin/Ear Studio].

Between cross-country moves, book projects, wild changes in the online media landscape over the past few years, and needless self-competition through social media, my laptop has accumulated hundreds and hundreds, arguably thousands, of bookmarks for things I wanted to write about and never did. Going back through them all feels like staring into a gravesite at the end of a life I didn’t realize was mortal.

For example, the fact that the scent of one of Saturn’s moons was created in a NASA lab in Maryland—speculative offworld perfumery—and that, who knows, it could even someday be trademarked. Or that mountain-front suburban homes in Colorado were unwittingly constructed over mines designed to collapse—and that of the mines have already begun to do so, taking surface roads along with them. Or the sand mines of central Wisconsin. Or the rise of robot-plant hybrids. Or the British home built around a preserved railway carriage “because bizarre planning regulations meant the train could not be moved”—a vehicle frozen into place through architecture.

In any case, another link I wanted to write about many eons ago explained that legendary producer and ambient musician Brian Eno had been hired to design new acoustics for London’s Chelsea and Westminster hospital, part of an overall rethinking of their patient-wellness plan. Healing through sound. “The aim,” the Evening Standard explained, “is to replicate techniques in use in the hospital’s paediatric burns unit, where ‘distraction therapy’ such as projecting moving images on to walls can avoid the need to administer drugs such as morphine.”

This is already interesting—if perhaps also a bit alarming, in that staring at images projected onto blank walls can apparently have the same effect as taking morphine. Or perhaps that’s beautiful, a chemical testament to the mind-altering potential of art amplified by modern electrical technology.

Either way, Eno was brought on board to “refine” the hospital’s acoustics, much as one would do for the interior of a luxury vehicle, and even to “provide soothing music” for the building’s patients, i.e. to write a soundtrack for architecture.

We are already in an era where the interiors of luxury cars are designed with the help of high-end acoustic consultants, where luxury apartments are built using products such as “acoustic plaster,” and where critical governmental facilities are constructed with acoustic security in mind—a silence impenetrable to eavesdroppers—but I remain convinced that middle-budget home developers all over the world are sleeping on an opportunity for distinguishing themselves. That is, why not bring Brian Eno in to design soothing acoustics for an entire village or residential tower?

Imagine a whole new neighborhood in Los Angeles designed in partnership with Dolby Laboratories or Bang & Olufsen, down to the use of acoustic-deflection walls and carefully chosen, sound-absorbing plants, or an apartment complex near London’s Royal Academy of Music with interiors acoustically shaped by Charcoalblue. SilentHomes™ constructed near freeways in New York City—or, for that matter, in the middle of nowhere, for sonically sensitive clients. Demonstration suburbs for unusual acoustic phenomena—like Joel Sanders et al.’s “Mix House” scaled up to suit modern real-estate marketers.

At the very least, consider it a design challenge. It’s 2020. KB Home has teamed up with Dolby Labs to construct a new housing complex covering three city blocks near a freeway in Los Angeles. What does it look—and, more to the point, what does it sound—like?

Patent Diagrams for Artificial Trees

At least, after we’ve cut down every last tree and forest, once we’ve rid the world of natural species, we’ll know how to build their replacements. Here are some diagrams for artificial trees, signed by their inventors, down to specific tufting techniques and mechanisms for branch attachments. Our future forests will be colorfast and fade-resistant—perhaps machine-washable—filled with recordings of historical birdsong, the world a puzzle we took apart believing someone else would know how to put it back together.

(All via Google Patents.)

Rootkit

[Image: Work by Diana Scherer, used to promote an event coming up on December 14th, in Wageningen, Holland, where the artist will be speaking].

The work of German-born artist Diana Scherer explores what she calls “the dynamics of belowground plant parts.” She uses plant roots themselves as a medium for creating patterns and networks, the purpose of which is to suggest overlaps between human technological activity and the embodied “intelligence” of living botanical matter. “This buried matter is still a wondrous land,” she writes.

The results are incredible. They feature roots woven like carpets or textiles, imitating Gothic ornament with floral patterns and computational arabesques underground.

[Image: “Ornament with Thistle” by Daniel Hopfer; via Wikimedia].

Compare Scherer’s work, for example, to traditional Gothic plant ornament—that is, geometric shapes meant to imitate the movements and behaviors of plants—but here actually achieved with plants themselves.

Scherer calls this “root system domestication,” where, on the flipside of an otherwise perfectly “natural” landscape, such as an expanse of lawn grass, wonderfully artificial, technical patterns can be achieved.

[Images: All images by Diana Scherer, from “Harvest: Exercises in Rootsystem Domestication”].

The idea that we could grow biological circuits and living rootkits is incredible, as if, someday, electronic design and gardening will—wonderfully and surreally—converge.

You simply step into your backyard, exhume some root matter as if harvesting potatoes, and whole new circuits and electrical networks are yours to install elsewhere.

[Image: From “Harvest: Exercises in Rootsystem Domestication” by Diana Scherer].

After all, the soil is already alive with electricity, and plants are, in effect, computer networks in waiting.

Scherer’s work simply takes those observations to their next logical step, you might argue, using plants themselves as an intelligent form-finding technology with implications for the organic hardware of tomorrow.

For more images, click through to Diana Scherer’s website, and, for those of you near Wageningen, consider stopping by the artist’s live Q&A on December 14th. Someone please commission a landscape-scale work from Scherer soon!

Landscapes of Data Infection

seeds[Image: An otherwise unrelated seed x-ray from the Bulkley Valley Research Centre].

There’s a fascinating Q&A in a recent issue of New Scientist with doctor and genetic researcher Karin Ljubic Fister.

Fister studies “plant-based data storage,” which relies on a combination of artificially modified genes, bacteria, and “infected” tobacco plants.

Comparing genetic programming with binary code, Fister explains that, “First you need a coding system. A computer program is basically a sequence of 0s and 1s, so we transformed this into the four DNA ‘letters’—A, G, C and T—by turning 00 into A, 10 into C, 01 into G and 11 into T. Then we synthesised the resulting DNA sequence. We transferred this artificial DNA into a bacterium and infected the leaf of a tobacco plant with it. The bacterium transfers this artificial DNA into the plant.”

Even better, the resulting “infection” is heritable: “We took a cutting of the infected leaf, planted it, and grew a full tobacco plant from it. This is essentially cloning, so all the leaves of this new plant, and its seeds, contained the ‘Hello World’ program encoded in their DNA.” The plants thus constitute an archive of data.

In fact, Fister points out that “all of the archives in the world could be stored in one box of seeds.” Now put that box of seeds in the Svalbard Global Seed Vault, she suggests, and you could store all the world’s information for thousands of years. Seed drives, not hard drives.

It’s worth reading the Q&A in full, but she really goes for it at the end, pointing out at least two things worth highlighting here.

saguaros[Image: “Higashiyama III” (1989) by Kozo Miyoshi, courtesy University of Arizona Center for Creative Photography; via but does it float].

One is that specialized botanical equipment could be used as a technical interface to “read” the data stored in plants. The design possibilities here are mind-boggling—and, in fact, are reminiscent of the Landscape Futures exhibition—and they lead directly to Fister’s final, amazing point, which is that this would, of course, have landscape-scale implications.

After all, you could still actually sow these seeds, populating an entire ecosystem with data plants: archives in the form of forests.

“Imagine walking through a park that is actually a library,” she says, “every plant, flower and shrub full of archived information. You sit down on a bench, touch your handheld DNA reader to a leaf and listen to the Rolling Stones directly from it, or choose a novel or watch a documentary amid the greenery.” Information ecosystems, hiding in plain sight.

Acoustic Forestry

[Image: From Acoustic Botany by David Benqué].

We saw David Benqué’s Fabulous Fabbers project here on BLDGBLOG a few months ago, but his more recent work, Acoustic Botany, deserves similar attention.

Acoustic Botany uses genetically modified plants to produce a “fantastical acoustic garden,” where sounds literally grow on trees. “Desired traits such as volume, timbre and harmony are acquired through selective breeding techniques,” the artist explains.

[Image: From Acoustic Botany by David Benqué].

As Benqué writes:

The debate around Genetic Engineering is currently centered around vital issues such as food, healthcare and the environment. However, we have been shaping nature for thousands of years, not only to suit our needs, but our most irrational desires. Beautiful flowers, mind altering weeds and crabs shaped like human faces all thrive on these desires, giving them an evolutionary advantage. By presenting a fantastical acoustic garden, a controlled ecosystem of entertainment, I aim to explore our cultural and aesthetic relationship to nature, and to question its future in the age of Synthetic Biology.

There are thus “singing flowers,” “modified agrobacteria” that ingeniously take “sugars and nutrients from the host plant to encourage the growth of parasitic galls and fill them with gas to produce sound,” and “string-nut bugs” that have been “engineered to chew in rhythm” inside hollow gourds.

[Image: From Acoustic Botany by David Benqué].

The symphonic range of sounds is then fine-tuned and modulated inside an acoustic lab using specialized equipment; out in the field, this takes the form of pruning trees into living chords, so that “harmonic note combinations” can bloom on a single branch.

Upscaling this to the level of all-out acoustic forestry would be an extraordinary thing to hear.

[Image: From Acoustic Botany by David Benqué].

I’m reminded of at least two quick things here:

1) Several years ago in the excellent British music magazine The Wire, there was an article about Brian Eno and “generative music,” in which the acoustic nature of backyard gardens was described quite beautifully based on the seasonal popping of seedpods, the rustle of leaf-covered fronds in evening breezes, and even, if I remember correctly, the specific insects that such plants might attract and support. Does anyone reading this have experience with planting a backyard garden based on its future acoustics?

2) Alex Metcalf’s Tree Listening project (which I have also covered elsewhere). “The installation,” Metcalf writes, “allows you to listen to the water moving up inside the tree through the Xylem tubes from the roots to the leaves.” Headphones hang down from the tree’s canopy like botanical iPods, and you put them on to lose yourself in arboreal surroundsound. Imagine a shortwave radio that allows you to tune not into distant stations sparkling with disembodied sounds and buzzing voices from the other side of the world, but into the syrupy tides of trees spiked with microphones in forests and sacred groves on every continent.

More images of Benqué’s project can be seen on the artist’s website.

(Spotted on Core77, thanks to a tweet from @soundscrapers).