Atlas of the Underworld

[Image: Via Science].

A “complete x-ray of Earth’s interior is coming into focus,” Science reported last week. Using computerized tomography, or CT scanning—the same technology used to visualize the interior of the human body for various medical diagnoses—Dutch Earth scientists are piecing together what they call an “Atlas of the Underworld.” They are documenting invisible landscape features—the ghostly remains of entire continents—hidden inside the planet, locked beneath the surface we dwell upon everyday.

Awesomely, these features include “oceans and mountains lost to Earth’s history,” we read, an Earth’s surface within the Earth’s surface:

The reconstructions are also resurrecting mountains that had been lost to time. For example, in a study published several months ago, [tectonicists Jonny Wu and John Suppe] reconstructed the travels of 28 slabs to recreate the Philippine Sea as it was more than 50 million years ago. Beyond identifying what appears to be a previously unknown piece of ocean crust, they predicted that as one of their paleoplates plunged into the mantle, it threw up a large chain of volcanoes that eventually collided with Asia. That convulsive process could explain mysterious folded rocks in Japan and beneath the East China Sea.

For now, however, these “lost mountains” remain digital projections based on available data, not real, physical discoveries. They are, we might say, tectonic fictions, unverified models of past Earths inside our own.

A researcher at the University of Oslo named Grace Shephard points out, for example, that she will soon “publish a comparison of 14 different models that will assess which slabs seem most likely to be real” (emphasis added).

[Image: The long-buried Farallon Plate, visible nowhere on the Earth’s surface—or, rather, only visible through its indirect, mountain-building effects; courtesy Karin Sigloch].

Twenty years ago, poet Gary Snyder published a book called Mountains and Rivers Without End. As the Freer and Sackler Galleries describe it, the book is an “epic celebration of nature and humanity that encompasses Asian artistic traditions, Native American storytelling, and Zen Buddhist philosophy,” all in the guise of a book of landscape poetry.

I mention this not because Snyder’s book is the only example of such a thing, but because it’s interesting to imagine a tomographic expansion of Snyder’s “mountains and rivers without end”—adding revelatory geophysics and otherworldly Earth-scanning technology to the book’s already eclectic mix of myths and texts.

In other words, where is the poetry of lost ghost continents, buried mountain ranges, drowned ocean basins, landlocked archipelagoes, melting thousands of miles beneath our feet, swirling slowly below us in the Earth’s deep interior?

(Thanks to Wayne Chambliss for the tip!)

Sunken Cities

[Image: Raising a house to help survive future floods; photo by Eliot Dudik, courtesy The New York Times].

The climate change-induced flooding of coastal cities along the U.S. eastern seaboard has already begun, the New York Times suggests.

“For decades, as the global warming created by human emissions caused land ice to melt and ocean water to expand, scientists warned that the accelerating rise of the sea would eventually imperil the United States’ coastline,” we read. “Now, those warnings are no longer theoretical: The inundation of the coast has begun.” In many places, “the sea is now so near the brim in many places that [scientists] believe the problem is likely to worsen quickly.”

The article is full of specific details that would not be out of place in a well-constructed novel, including dead lawns killed by exposure to seawater, vacuum trucks sent out “to suck saltwater off the streets,” and “huge vertical rulers” installed along roads to help drivers judge if the floodwaters “are too deep to drive through.”

These are the new, everyday practices of life on a future seabed: preparatory behaviors as the waters rise and whole communities face permanent inundation.

What’s so interesting about this, in fact, is the apparent lack of panic and catastrophe. While this seeming calmness is no doubt based purely in denial—not just denial that excessive carbon dioxide in the atmosphere retains more heat, leading to warming, but denial of the fact that this is the new normal, that these floods are not flukes but early glimpses of a fundamentally transformed landscape to come—people are nonetheless simply getting on with their lives, even as radical change occurs around them at every scale.

I’m still haunted by a small detail from a similar story published a few years ago, following Hurricane Sandy, about a place called Broad Channel, an outer neighborhood of New York City. There, rising coastal waters have been causing more and more flooding, to the extent that it has become a regular occurrence—not something terrifying, just mildly irritating.

This is true to the extent that residents have now developed otherwise calm and perfectly rational ways of warning one another that the waters are back, that the streets are flooding, and—more to the point—that they should perhaps consider moving their cars.

Broad Channel is now “a place where residents cling to tide clocks and, some joke, every child gets wading boots for Christmas. Neighbors will honk a car horn in the middle of the night to warn others of an approaching tide, and some have made pencil markings on their homes to show water levels from storms past.”

If we ask ourselves what life will be like in the Anthropocene, after the ever-mounting effects of climate change become real, it’s worth remembering these people “honk[ing] a car horn in the middle of the night to warn others of an approaching tide.”

In other words, the Anthropocene will look perfectly normal: people will simply vacuum-pump seawater out of their carports and garages, scrub encrusted salt from the walls of the homes, give each other waterproof boots for Christmas, and otherwise go on as if the world hasn’t changed.

The secret of the Anthropocene is that it’s just another kind of everyday life.

“Today’s world has no equivalent”

[Image: Tromsø, Norway; photo by BLDGBLOG].

Ted Nield’s book Supercontinent: Ten Billion Years in the Life of Our Planet—previously discussed back in 2012—is an exercise in what has long been referred to here as landscape futures.

In Nield’s case, this means literally imagining what the surface of the Earth might look like after hundreds of millions of years’ worth of tectonic transformations have deformed it beyond all recognition. Supercontinent could thus be read alongside Jan Zalasiewiez’s The Earth After Us as a useful guide for thinking about radical landscape change on a truly inhuman timescale.

Nield writes, for example, that, “even if some civilization of 200 million years ago had completely covered [the Earth] in cities and then wiped itself out in some gigantic global nuclear holocaust, nothing—not even the faintest trace of some unnatural radioisotope—would now remain on the surface.” Some of us might think that writing books, for example, is a way to achieve immortality—or winning an Oscar or becoming a national leader—yet covering the entire planet with roads and buildings is still not enough to guarantee a place in any sort of collective future memory. Everything will be erased.

The book goes from a speculative, but apparently realistic, scenario in which subduction zones might open in the Caribbean—thus dragging North America back toward a seemingly inexorable collision with Eurasia—to the future implications of past tectonic activity. Supercontinents have come and gone, Nield reminds us, and the cycle of these mega-islands is “the grandest of all the patterns in nature.” “750 million years before Pangaea formed,” he writes, “yet another [supercontinent] broke up; and before that another, and so on and on, back into the almost indecipherable past.”

At one point, Nield asks, “what of older supercontinents? What of the supercontinent that broke up to give us Pangaea? And the one before that? Compared with Pangaea, those lost worlds seem truly lost. As with all geological evidence, the older it is, the less of it survives, the more mangled it has become and the harder it is to interpret.”

It is all but impossible to picture them—to see oneself standing on them—as you can with Pangaea. They have their magical names, which lend them reality of a sort despite the fact that, for some, even their very existence remains controversial. About Rodinia, Pannotia, Columbia, Atlantica, Nena, Arctica or distant Ur, the mists of time gather ever more thickly.

The amazing thing is that this cycle will continue: long after North America is expected to reunite with Eurasia, which itself will have collided with North Africa, there will be yet another splintering, following more rifts, more bays and inland seas, in ever-more complicated rearrangements of the Earth’s surface, breeding mountain ranges and exotic island chains. And so on and so on, for billions of years. Bizarre new animals will evolve and bacteria will continue to inter-speciate—and humans will long since have disappeared from the world, unable to experience or see any of these future transformations.

While describing some of the potential ecosystems and landscapes that might result from these tectonic shifts, Nield writes that “our knowledge of what is normal behavior for the Earth is extremely limited.”

Indeed, he suggests, the present is not a key to the past: geologists have found “that there were things in the deepest places of Earth history for the unlocking of whose secrets the present no longer provided the key.” These are known as “no-analog” landscapes.

That is, what we’re experiencing right now on Earth potentially bears little or no resemblance to the planet’s deep past or far future. The Earth itself has been, and will be again, unearthly.

[Image: Oulanka National Park, Finland; photo by Peter Essick, courtesy of the University of Missouri].

In any case, I mention all this because of a quick description found roughly two-fifths of the way through Nield’s book where he discusses lost ecosystems—landscapes that once existed here but that no longer have the conditions to survive.

Those included strange forests that, because of the inclination of the Earth’s axis, grew in almost permanent darkness at the south pole. “These forests of the polar night,” Nield explains, describing an ancient landscape in the present tense, “withstand two seasons: one of feeble light and one of unremitting dark. Today’s world has no equivalent of this eerie ecosystem. Their growth rings show that each summer these trees grow frenetically. Those nearer the coast are lashed by megamonsoon rains roaring in from [the lost continent] of Tethys, the thick cloud further weakening the feeble sunshine raking the latitudes at the bottom of the world.”

There is something so incredibly haunting in this image, of thick forests growing at the bottom of the world in a state of “unremitting” darkness, often lit only by the frozen light of stars, swaying now and again with hurricane-force winds that have blown in from an island-continent that, today, no longer exists.

Whatever “novel climates” and unimaginable geographies lie ahead for the Earth, it will be a shame not to see them.

(Related: Ghosts of Planets Past: An Interview with Ron Blakey).

L.A. Recalculated

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

London-based architects Smout Allen and I have a project in the new issue of MAS Context, work originally commissioned for the 2015 Chicago Architecture Biennial and closely related to our project, L.A.T.B.D., at the University of Southern California Libraries.

Called L.A. Recalculated, the project looks at Greater Los Angeles as a seismically active and heavily urbanized terrain punctuated by large-scale scientific instrumentation, from geophysics to astronomy. This is explained in more detail, below.

Between the drawings and the text, it’s something I’ve been very enthusiastic about for the past year or so, and I’m thrilled to finally see it published. I thus thought I’d include it here on the blog; a slightly edited version of the project as seen on MAS Context appears below.

L.A. Recalculated
Commissioned for the 2015 Chicago Architecture Biennial

Los Angeles is a city where natural history, aerospace research, astronomical observation, and the planetary sciences hold outsized urban influence. From the risk of catastrophic earthquakes to the region’s still operational oil fields, from its long history of military aviation to its complex relationship with migratory wildlife, Los Angeles is not just a twenty-first-century megacity.

Its ecological fragility combined with an unsettling lack of terrestrial stability mean that Los Angeles requires continual monitoring and study: from its buried creeks to its mountain summits, L.A. has been ornamented with scientific equipment, crowned with electromagnetic antennae, and ringed with seismic stations, transforming Los Angeles into an urban-scale research facility, a living device inhabited by millions of people on the continent’s westernmost edge.

[Image: Models from the related project, L.A.T.B.D., by Smout Allen and BLDGBLOG; photo courtesy Stonehouse Photographic].

L.A. Recalculated can be seen as a distributed cartographic drawing—part map, part plan, part section—that takes conceptual inspiration from the book OneFiveFour by Lebbeus Woods. There, Woods describes a hypothetical city shaped by the existential threat of mysterious seismic events surging through the ground below. In order to understand how this unstable ground might undermine the metropolis, the city has augmented itself on nearly every surface with “oscilloscopes, refractors, seismometers, interferometers, and other, as yet unknown instruments,” he writes, “measuring light, movement, force, change.”

In this city of instruments—this city as instrument—“tools for extending perceptivity to all scales of nature are built spontaneously, playfully, experimentally, continuously modified in home laboratories, in laboratories that are homes,” exploring the moving surface of an Earth in flux. Architecture becomes a means for giving shape to these existential investigations.

Twenty-first-century Los Angeles has inadvertently fulfilled Woods’s speculative vision. It is less a city, in some ways, than it is a matrix of seismic equipment and geological survey tools used for locating, mapping, and mitigating the effects of tectonic faults. This permanent flux and lack of anchorage means that studying Los Angeles is more bathymetric, we suggest, than it is terrestrial; it is oceanic rather than grounded.

[Image: Models from the related project, L.A.T.B.D., by Smout Allen and BLDGBLOG; photo courtesy Stonehouse Photographic].

L.A. is also a graveyard of dead rocket yards and remnant physics experiments that once measured and established the speed of light using prisms, mirrors, and interferometers in the San Gabriel Mountains (an experiment now marked by historic plaques and concrete obelisks). Further, Los Angeles hosts both the Griffith and Mt. Wilson Observatories through which the region achieved an often overlooked but vital role in the history of global astronomy.

Seen through the lens of this expanded context, Los Angeles becomes an archipelago of scientific instruments often realized at the scale of urban infrastructure: densely inhabited, with one eye on the stars, sliding out of alignment with itself, and jostled from below with seismic tides.

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—ONE—
The surface of Los Angeles is both active and porous. A constant upwelling of liquid hydrocarbons and methane gas is everywhere met with technologies of capture, mitigation, and control. In our proposal, wheeled seismic creepmeters measure the movement of the Earth as part of an experimental lab monitoring potentially hazardous leaks of oil and tar underground.

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—TWO—
The speed of light was accurately measured for the first time just outside this city of sunshine and cinema. Using complex scientific instrumentation assembled from rotating hexagonal prisms, mirrors, and pulses of light, housed inside small, architecturally insignificant shacks in the mountains behind Los Angeles, one of the fundamental constants of the universe was cracked.

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—THREE—
In the heart of the city, atop the old neighborhoods of Chavez Ravine, erased to make way for Dodger Stadium, we propose a series of 360º planetariums to be built. These spherical projections not only reconnect Los Angeles with the stars, constellations, and distant galaxies turning through a firmament its residents can now rarely see; they also allow simulated glimpses into the Earth’s interior, where the planet’s constantly rearranging tectonic plates promise a new landscape to come, a deeper world always in formation. The destroyed houses and streets of this lost neighborhood also reappear in the planetarium shows as a horizon line to remind visitors of the city’s recent past and possible future.

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—FOUR—
As the city changes—its demography variable, its landscape forever on the move—so, too, do the constellations high above. These shifting heavens allow for an always-new celestial backdrop to take hold and influence the city. A complex architectural zodiac is developed to give a new narrative context for these emerging astral patterns.

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—FIVE—
Seismic counterweights have long been used to help stabilize skyscrapers in earthquake zones. Usually found at the tops of towers, these dead weights sway back and forth during temblors like vast and silent bells. Here, a field of subterranean pendulums has been affixed beneath the city to sway—and counter-sway—with every quake, a kind of seismic anti-doomsday clock protecting the city from destruction.

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—SIX—
All of the oil, tar, and liquid asphalt seeping up through the surface of the city can be captured. In this image, slow fountains attuned to these percolating ground fluids gather and mix the deeper chemistry of Los Angeles in special pools and reservoirs.

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—SEVEN—
The endless jostling of the city, whether due to tectonic activity or to L.A.’s relentless cycles of demolition and construction, can be tapped as a new source of renewable energy. Vast flywheels convert seismic disturbance into future power, spinning beneath generation facilities built throughout the city’s sprawl. Los Angeles will draw power from the terrestrial events that once threatened it.

28_la_recalculated_08[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—EIGHT—
Through sites such as Griffith Observatory and the telescopes of Mt. Wilson, the history of Los Angeles is intimately connected to the rise of modern astronomy. The city’s widely maligned landscape of freeways and parking lots has been reinvigorated through the precise installation of gates, frames, and other architectural horizon lines, aligning the city with solstices, stars, and future constellations.

• • •

L.A. Recalculated was commissioned by the 2015 Chicago Architecture Biennial, with additional support from the USC Libraries Discovery Fellowship, the Bartlett School of Architecture, UCL, and the British Council. Special thanks to Sandra Youkhana, Harry Grocott, and Doug Miller.

Meanwhile, check out the closely related project, L.A.T.B.D.. Broadly speaking, L.A.T.B.D. consists of—among many other elements, including narrative fiction and elements of game design—3D models of the architectural scenarios described by L.A. Recalculated.

The Disease Reservoirs of the Future

flood[Image: Flooding in Brooklyn during Hurricane Sandy; Instagram by BLDGBLOG].

Before heading out the other night to see a panel on pandemic diseases moderated by Sonia Shah—author of the interesting new book Pandemic: Tracking Contagions, from Cholera to Ebola and Beyond—I read an otherwise unrelated article about the current rate of sea level rise.

According to a new study, the New York Times explains, sea levels are “rising faster than at any point in 28 centuries, with the rate of increase growing sharply over the past century.” Needless to say, this is having—and will continue to have—extraordinary landscape effects.

Rising sea levels are already “straining life in many towns,” the New York Times continues, “by killing lawns and trees, blocking neighborhood streets and clogging storm drains, polluting supplies of freshwater and sometimes stranding entire island communities for hours by overtopping the roads that tie them to the mainland.”

And true sea level rise has barely started.

8159621140_f891a54884_bFlooded L-train tunnel following Hurricane Sandy; photo courtesy MTA].

Recall, for example, the Guardian’s recent depiction of Miami as a city at war with the sea, as ocean water now surges into the streets from below, assaulting the surface through backed-up storm sewers.

Tidal surges are turned into walls of seawater that batter Miami Beach’s west coast and sweep into the resort’s storm drains, reversing the flow of water that normally comes down from the streets above. Instead seawater floods up into the gutters of Alton Road, the first main thoroughfare on the western side of Miami Beach, and pours into the street. Then the water surges across the rest of the island.
The effect is calamitous. Shops and houses are inundated; city life is paralysed; cars are ruined by the corrosive seawater that immerses them. During one recent high spring tide, laundromat owner Eliseo Toussaint watched as slimy green saltwater bubbled up from the gutters. It rapidly filled the street and then blocked his front door. “This never used to happen,” Toussaint told the New York Times. “I’ve owned this place eight years and now it’s all the time.”

It’s worth pointing out, of course, that Michael Grunwald, author of the excellent book The Swamp: The Everglades, Florida, and the Politics of Paradise—a Cadillac Desert for South Florida—rebutted most of that article’s more salacious points.

“I’m sorry to spoil the climate porn,” Grunwald wrote for Time, “but while the periodic puddles in my Whole Foods parking lot are harbingers of a potentially catastrophic future, they are not currently catastrophic. They are annoying. And so is this kind of yellow climate journalism.”

However, Elizabeth Kolbert recently picked up the baton in a great and convincing piece for The New Yorker. Kolbert rode around the city, speaking with geologists and water managers, visiting neighborhoods already experiencing the landscape-futures of climate change. “We’d come to a neighborhood,” she writes, “of multimillion-dollar homes where the water was creeping under the security gates and up the driveways. Porsches and Mercedeses sat flooded up to their chassis.”

Tomorrow’s coastal landscape, today.

413595765_b8f3bb69e3_z[Image: Flooding in New York State; photo by Jonathan LaRocca/Creative Commons].

In any case, continue this trend for a century, two centuries, three centuries, and coastal cities such as Miami—and New York and Shanghai and Sydney and Lagos and Rio—are threatened not with Grunwald’s annoyance but with extinction. “Experts say the situation would then grow far worse in the 22nd century and beyond,” the New York Times points out, “likely requiring the abandonment of many coastal cities.”

None of this is news—even here on BLDGBLOG, we’ve been looking at the flooded cities of a climate-changed future since nearly day one—but it was interesting to consider this vision of a drowned world while listening to Sonia Shah and her panelists discuss known reservoirs of microbes and pathogens.

Take the Sundarbans, for example.

sundarban[Image: The Sundarbans, courtesy NASA].

In Shah’s book, Pandemic, she explains that the Sundarbans—which she describes as “a netherworld of land and sea long hostile to human penetration” in the Bay of Bengal—are the natural reservoir of Vibrio cholerae bacteria. These, of course, cause cholera.

The environmental and spatial conditions there are perfect for their survival, and it was only human intervention—and, later, global trade—that allowed cholera to make its great escape.

During the event the other night, Shah also pointed out that our mountains of impermeable plastic waste are inadvertently forming a nearly ideal, artificial ecosystem for mosquitoes, giving those insects a water-logged environment—a different kind of “plastisphere”—in which to breed. The conditions, again, are perfect for mosquitos’ survival, an accidental augmentation of their habitat by way of the consumer packaging industry.

I mention all this because it’s hard not to wonder what future disease reservoirs might form in an era of rising sea levels and flooded cities. Down in the drowned road tunnels of New York, for example, or in the geyser-like storm drains of an uninhabitable Miami—in the basements, parking lots, and silt-filled shopping malls of a submerged world—what future infections will find a route for spilling over into the human world, what disease-ridden insects find ideal conditions for replication?

These sorts of “neglected environments contaminated with human filth,” as Shah describes them, are great shapers of pandemics.

While this is not only interesting from the perspective of a potential novel plot—a Michael Crichton-like thriller set in a flood-ravaged world, where strange diseases emerge from forgotten suburbs engulfed by the sea—it also has clear epidemiological relevance, in terms of scanning ahead for potential outbreaks.

In other words, we know—as Shah’s panel the other night made abundantly clear—that human settlement in previously wild landscapes, such as deep rain forests and coastal mangrove swamps, poses predictable, if statistically complex, dangers in terms of exposing people to new diseases. But we should thus also be able to predict that certain forthcoming landscape-scale events—the permanent flooding of the New York City subway system, say, or Floridian landfills fatally overcome by rising tides—will also come with more or less known epidemiological side-effects.

Consider Bill McKibben’s recent piece in the Guardian, for example, where he writes that the Zika virus “foreshadows our dystopian climate future.” Zika, McKibben writes, is unsettling evidence that a changing climate has forced us to take “one more step in the division of the world into relative safe and dangerous zones,” suggesting “an emerging epidemiological apartheid.”

malaria copy[Image: Mapping the potential future spread of malaria; UNEP/GRID].

So what are the microbes, bacteria, or pathogens—what are the insects, rodents, and invasive species—that might thrive in these as-yet unrealized landscapes? What future disease reservoirs will form, as coastal cities and towns are erased by the sea, and what are the specific thresholds that tomorrow’s epidemiologists should be looking for?

Put another way, what pandemics might emerge from these cities we know will drown?

An exceptional, extreme, and largely unexplored place

gunnison
The always interesting Center for Land Use Interpretation is seeking proposals from artists, writers, designers, architects, and more to “explore the land and waterscape of the north arm of the Great Salt Lake, known as Gunnison Bay.”

It’s a landscape they describe as “an exceptional, extreme, and largely unexplored place”:

The construction of a filled-in railroad causeway in the late 1950s cut the original lake in half, creating a new, anthropogenic entity, more isolated and saline, that has evolved into a landscape of desiccation that resembles another planet, or this one in some past or future time.

They specifically hope that you’ll include in your exploration of this seemingly parallel terrestriality the so-called Great Salt Lake Exploration Platform, or GSLEP, a pontoon structure built by Chris Taylor and Steve Badgett (it’s a boat).

Proposals are due March 1, 2016.

There is much more information over at CLUI’s website, so check out the full call-for-proposals.

Landscapes of Data Infection

seeds[Image: An otherwise unrelated seed x-ray from the Bulkley Valley Research Centre].

There’s a fascinating Q&A in a recent issue of New Scientist with doctor and genetic researcher Karin Ljubic Fister.

Fister studies “plant-based data storage,” which relies on a combination of artificially modified genes, bacteria, and “infected” tobacco plants.

Comparing genetic programming with binary code, Fister explains that, “First you need a coding system. A computer program is basically a sequence of 0s and 1s, so we transformed this into the four DNA ‘letters’—A, G, C and T—by turning 00 into A, 10 into C, 01 into G and 11 into T. Then we synthesised the resulting DNA sequence. We transferred this artificial DNA into a bacterium and infected the leaf of a tobacco plant with it. The bacterium transfers this artificial DNA into the plant.”

Even better, the resulting “infection” is heritable: “We took a cutting of the infected leaf, planted it, and grew a full tobacco plant from it. This is essentially cloning, so all the leaves of this new plant, and its seeds, contained the ‘Hello World’ program encoded in their DNA.” The plants thus constitute an archive of data.

In fact, Fister points out that “all of the archives in the world could be stored in one box of seeds.” Now put that box of seeds in the Svalbard Global Seed Vault, she suggests, and you could store all the world’s information for thousands of years. Seed drives, not hard drives.

It’s worth reading the Q&A in full, but she really goes for it at the end, pointing out at least two things worth highlighting here.

saguaros[Image: “Higashiyama III” (1989) by Kozo Miyoshi, courtesy University of Arizona Center for Creative Photography; via but does it float].

One is that specialized botanical equipment could be used as a technical interface to “read” the data stored in plants. The design possibilities here are mind-boggling—and, in fact, are reminiscent of the Landscape Futures exhibition—and they lead directly to Fister’s final, amazing point, which is that this would, of course, have landscape-scale implications.

After all, you could still actually sow these seeds, populating an entire ecosystem with data plants: archives in the form of forests.

“Imagine walking through a park that is actually a library,” she says, “every plant, flower and shrub full of archived information. You sit down on a bench, touch your handheld DNA reader to a leaf and listen to the Rolling Stones directly from it, or choose a novel or watch a documentary amid the greenery.” Information ecosystems, hiding in plain sight.

Burial Grounds

Blogger Andrew Ray of Some Landscapes recently re-read The Wind in the Willows to his son, stumbling on “an intriguing passage that I’d forgotten all about, concerning Badger’s large underground home.” It is a scene where “the idea of the city has been literally buried,” where, “civilisations decline but nature endures,” an underground world of ruined architecture and vaulted halls disguised as forests.

Agrirobotics

The USDA has announced a grant-giving program “for robots to roam farmlands,” Modern Farmer reports. It’s called the “National Robotics Initiative,” and it’s “getting $3 million to give in grants to robotics programs around the country to create robot-led agricultural advances.”

Dead Ringer

[Image: Mars’s moon, Phobos; courtesy NASA /JPL/University of Arizona].

Oh, to live another 40 million years… “One day,” Nature reports, “Mars may have rings like Saturn does”:

The martian moon Phobos, which is spiralling inexorably closer towards the red planet, will disintegrate to form a ring system some 20 million to 40 million years from now, according to calculations published on 23 November. Other research suggests that long grooves on Phobos’s surface may represent the first stages of that inevitable crack-up.

After that point, a red mineral ring will gradually coalesce from the dust storm, circling the planet in a desert halo.

In terms of human experience, 20-40 million years obviously dwarfs our anatomical and genetic history as modern Homo sapiens, and I am excessively confident that no humans will be around to witness this event. Nonetheless, it’s not actually that far off. The Earth itself is 4.5 billion years old; 20-40 million years is the geological blink of an eye. In a sense, we will just miss it.

For what it’s worth, Neal Stephenson’s most recent novel, Seveneves, is about a similar event—but set on Earth, not Mars.

“What if Earth’s moon suddenly and spontaneously broke apart into seven large pieces?” a review in the New York Times asked. “What would happen to life on Earth? It’s an intriguing premise, one that could conceivably go in any number of interesting directions. What would be the ramifications for every aspect of society, including economics, governance, the rule of law, privacy and security, not to mention even more fundamental matters like reproductive rights, religion and belief?”

In any case, read more over at Nature.

Computational Romanticism and the Dream Life of Driverless Cars

[Image by ScanLAB Projects for The New York Times Magazine].

Understanding how driverless cars see the world also means understanding how they mis-see things: the duplications, glitches, and scanning errors that, precisely because of their deviation from human perception, suggest new ways of interacting with and experiencing the built environment.

Stepping into or through the scanners of autonomous vehicles in order to look back at the world from their perspective is the premise of a short feature I’ve written for this weekend’s edition of The New York Times Magazine.

For a new series of urban images, Matt Shaw and Will Trossell of ScanLAB Projects tuned, tweaked, and augmented a LiDAR unit—one of the many tools used by self-driving vehicles to navigate—and turned it instead into something of an artistic device for experimentally representing urban space.

The resulting shots show the streets, bridges, and landmarks of London transformed through glitches into “a landscape of aging monuments and ornate buildings, but also one haunted by duplications and digital ghosts”:

The city’s double-­decker buses, scanned over and over again, become time-­stretched into featureless mega-­structures blocking whole streets at a time. Other buildings seem to repeat and stutter, a riot of Houses of Parliament jostling shoulder to shoulder with themselves in the distance. Workers setting out for a lunchtime stroll become spectral silhouettes popping up as aberrations on the edge of the image. Glass towers unravel into the sky like smoke. Trossell calls these “mad machine hallucinations,” as if he and Shaw had woken up some sort of Frankenstein’s monster asleep inside the automotive industry’s most advanced imaging technology.

Along the way I had the pleasure of speaking to Illah Nourbakhsh, a professor of robotics at Carnegie Mellon and the author of Robot Futures, a book I previously featured here on the blog back in 2013. Nourbakhsh is impressively adept at generating potential narrative scenarios—speculative accidents, we might call them—in which technology might fail or be compromised, and his take on the various perceptual risks or interpretive short-comings posed by autonomous vehicle technology was fascinating.

[Image by ScanLAB Projects for The New York Times Magazine].

Alas, only one example from our long conversation made it into the final article, but it is worth repeating. Nourbakhsh used “the metaphor of the perfect storm to describe an event so strange that no amount of programming or image-­recognition technology can be expected to understand it”:

Imagine someone wearing a T-­shirt with a STOP sign printed on it, he told me. “If they’re outside walking, and the sun is at just the right glare level, and there’s a mirrored truck stopped next to you, and the sun bounces off that truck and hits the guy so that you can’t see his face anymore—well, now your car just sees a stop sign. The chances of all that happening are diminishingly small—it’s very, very unlikely—but the problem is we will have millions of these cars. The very unlikely will happen all the time.”

The most interesting takeaway from this sort of scenario, however, is not that the technology is inherently flawed or limited, but that these momentary mirages and optical illusions are not, in fact, ephemeral: in a very straightforward, functional sense, they become a physical feature of the urban landscape because they exert spatial influences on the machines that (mis-)perceive them.

Nourbakhsh’s STOP sign might not “actually” be there—but it is actually there if it causes a self-driving car to stop.

Immaterial effects of machine vision become digitally material landmarks in the city, affecting traffic and influencing how machines safely operate. But, crucially, these are landmarks that remain invisible to human beings—and it is ScanLAB’s ultimate representational goal here to explore what it means to visualize them.

While, in the piece, I compare ScanLAB’s work to the heyday of European Romanticism—that ScanLAB are, in effect, documenting an encounter with sublime and inhuman landscapes that, here, are not remote mountain peaks but the engineered products of computation—writer Asher Kohn suggested on Twitter that, rather, it should be considered “Italian futurism made real,” with sweeping scenes of streets and buildings unraveling into space like digital smoke. It’s a great comparison, and worth developing at greater length.

For now, check out the full piece over at The New York Times Magazine: “The Dream Life of Driverless Cars.”