Looming Matter With Light

“When light collides with other light, it can transform into particles of matter,” science writer Corey S. Powell posted on Twitter the other day. He was referring to recent evidence from the Relativistic Heavy Ion Collider that “pairs of electrons and positrons—particles of matter and antimatter—can be created directly by colliding very energetic photons.” In other words, the “conversion of energetic light into matter” might be physically achievable: you can create matter with light.

I am in no position to comment on the science of this beyond the sheer poetry of the description; if you want to learn more about the actual experiment, I’d strongly advise going to the source material, not to BLDGBLOG. But so many metaphors come to mind here—precipitation and snow; depositional 3D printing; shining looms of light, bringing matter into the cosmos.

Imagine an industrial printing facility of the far future whose only input is light. Factories of weird mirrored rooms where objects flash into existence one at a time, in a new manufacturing process extruding matter from illumination.

In any case, I was also reminded of a piece published in Nature back in 2011: “Moving mirrors make light from nothing.”

The hypothesis there was that a single mirror “moving through a vacuum at nearly the speed of light” could, through something called the Casimir force, actually generate photons—the mirror could create light. This was apparently given experimental support when “a shower of microwave photons [was] shaken loose from the vacuum” by a highly sensitive superconducting device known as a SQUID.

The scientist behind that experiment now “hopes to see a moving piece of metal generate detectable light from the vacuum,” as if farming light from nothingness, coaxing photons into appearing like seeds, shaking them loose from the void.

Mirrors moving through darkness at the speed of light can create light—the sheer poetry of this is astonishing to me, like a statement from the Gnostic Gospels.

Anyway, now put these two experiments together: use a moving mirror to pull light from darkness, then collide that light back into itself to generate matter. You could design a kind of internal combustion engine made of moving mirrors, turning darkness into light into matter.

Again, though, read the original articles if you prefer science over speculation.

Men in Space

[Image: Caspar David Friedrich, “Wanderer Above the Sea of Fog” (c. 1818).]

[NOTE: I have dozens of posts—from book reviews to news items—sitting in my drafts folder that I never published for some reason. In re-reading this, from summer 2019, I thought I’d publish it.]

The tone of a new piece by Matthew Walther in The Week hits just shy of satire, but it makes an interesting—and, I would suggest, valid—point about the Apollo moon landing as more of an art historical event, a direct extension of European Romanticism, than it was a scientific one.

“What Goethe began at Weimar in 1789 ended on August 15, 1969,” Walther writes. “Apollo 11 was the culmination of the Romantic cult of the sublime prefigured in the speculations of Burke and Kant, an artistic juxtaposition of man against a brutal environment upon which he could project his fears, his sympathies, his feelings of transcendence.” Note the use of the word man.

The primarily aesthetic nature of the first Apollo mission becomes clearer when one considers it from the perspective of both the participants and the spectators. The lunar landing was not a scientific announcement or a political press conference; it was a performance, a literal space opera, a Wagnerian Gesamtkunstwerk that brought together the efforts of more than 400,000 people, performed before an audience of some 650 million.

I’m reminded of Kathleen Jamie’s critique of Robert Macfarlane’s work, published in the London Review of Books several years ago. There, Jamie mocked the current state of nature writing as a genre of the “lone enraptured male,” in her words, who she instead portrays as a figure of mythic delusion seeking self-aggrandizing solitude amongst inhuman things.

“What’s that coming over the hill?” Jamie asks. “A white, middle-class Englishman! A Lone Enraptured Male! From Cambridge! Here to boldly go, ‘discovering’, then quelling our harsh and lovely and sometimes difficult land with his civilised lyrical words.” Of course, to boldly go is clearly a sarcastic reference to a particular kind of explorer’s impulse “to boldly go where no man has gone before.”

In this context, consider Walther’s own comment that much of modern expeditionary literature—such as Antarctic diaries or the records of long ship journeys—was often written by “hard men” who “put their will in the service of a literary mania for feelings of remoteness, hugeness, and brooding oceanic emptiness. What a shame that we have been able to produce no great lunar literature to succeed the writings by Byron, the Shelleys, Tennyson, and Melville that both immortalized and inspired the great hypothermic pioneers.”

Men sending themselves to the moon, men climbing mountains, men staring down glacial landscapes alone or moving into mountain huts and man-caves.

I remember waking up from a dream once, maybe ten or twelve years ago*, in which I had been the author of a novel called Space. In that dream, my (purely imaginary) novel was about a man who abandons his family—leaving his wife and kids without notice—to find “space” for himself elsewhere, an ill-considered quest for solitude that was emotionally and financially devastating for the people he left behind, but a feeling of “space” he valued so much that he could not bring himself to worry about the pain it might cause to others. In other words, it was space refigured as a kind of masculine cruelty, a weapon for solitude-seeking men who can afford to walk away—space as freedom from consequences masquerading as self-sufficiency. (I wrote a description of the dream down the next morning and thus still remember it.)

In any case, I will say—perhaps because I am blinded by my own demography—that the idea of expeditionary solitude as a kind of landscape project, something that can lure hikers into remote national forests or pull unaccompanied astronauts into deep valleys on the dark sides of distant worlds, needn’t necessarily be gendered and needn’t necessarily have any scientific value at all. Humans alone in an experience of awe, surrounded by geology, can have nothing more than aesthetic value—of course, whether it’s $152 billion worth of aesthetic value is another question entirely.

*UPDATE: Looking back at my notes, I actually had this dream in September 2014.

Body Sonic / Coronavirus Surroundsound

[Image: A shot of “Carl Craig: Party/After-Party” (2020), by Don Stahl, via Artforum.]

There’s a great moment in a recent article by Jace Clayton, who reviews an installation by DJ and musician Carl Craig for Artforum, where Clayton talks about music’s relationship to empty space.

There is something of “a sonic axiom,” Clayton writes: “Amplified music sounds terrible in empty rooms. The less stuff there is in any given space, the more sound waves will bounce around the walls and ceiling and glass, losing definition as they both interrupt and double themselves. The resulting audio is smeary, muffled, and diffuse. However, when the same space fills with bodies moving around, those waves are absorbed, dampening those irksome reflections and allowing us to hear the sound more powerfully and in far greater detail.”

The effect is such that “the only thing that could make [music] sound better is people.” Bodies make music better—a second sonic axiom, as well as an optimist’s call for more social listening. In other words, your music will sound better the more people you experience it with. Hang out with others. Be bodies. Share.

In any case, Clayton’s piece went online a couple weeks ago but I find myself thinking about it almost daily, as the acoustic effects of the coronavirus lockdown become clear in cities around the world.

“As the pandemic brought much of the crush of daily life to a halt,” the New York Times reported, “microphones listening to cities around the world have captured human-made environments suddenly stripped of human sounds.” To put this in Clayton’s terms, cities are now spaces without bodies.

Think, for example, of Francesca Marciano describing “the new silences of Rome” in an age of coronavirus, or the New York Times itself pointing out how, in Manhattan, “the usual chaos of sounds—car horns, idle chatter and the rumble of subways passing frequently below—[has] been replaced by the low hum of wind and birds. Sound levels there fell by about five decibels, enough to make daytime sound more like a quiet night.”

There is an interesting paradox at work here, though, in terms of a widely reported belief that birds appear to be singing louder than ever before: birds are actually quieting down now, as they have less competition to out-sing. As the NYT writes, this is “because they no longer have to sing louder to be heard over the racket of the city, a behavior, known as the Lombard effect, that has been observed in other animals, too.”

[Image: Gowanus, Brooklyn; photograph by Geoff Manaugh.]

I’ve written at length about sound and the city elsewhere, but one of my favorite pieces on this was a short profile of acoustic engineer Neill Woodger, then-head of Arup’s SoundLab, published in Dwell way back in June 2008.

There, Woodger made the point that, as we transition to electric vehicles, which will remove the sound of the internal combustion engine from our cities, we are being given a seemingly once-in-a-lifetime acoustic opportunity: to redesign urban space for sound, highlighting noises we might want to hear—birdsong, bells, distant train whistles—and helping to excise those we do not.

The coronavirus, it seems, has inadvertently set the stage for another such sonic opportunity. Our global urban lockdowns have all but stripped our cities of “bodies moving around,” in Clayton’s words, such that our streets now sound quite eerie, as if replaced by uncanny muted versions of themselves, or what Marciano calls “an atmosphere of peaceful suspension, as when it snows and everything is wrapped in cotton wool.”

Much has been made of how temporary design interventions in response to COVID-19—things like wider sidewalks, outdoor cafes, streets liberated from cars and opened up to children, families, and the elderly—might become permanent.

In this context, what permanent acoustic shifts might we hear coming from all this, as well?

(Consider picking up a copy of Jace Clayton’s book, Uproot: Travels in 21st-Century Music and Digital Culture.)

Gravitational Lensing, Interstellar Cinematography, and the Future of Magical Warfare in Space

[Image: An example of gravitational lens effects, via Wikipedia.]

Over at WIRED, Daniel Oberhaus, author of the recent book Extraterrestrial Languages, takes a look at some proposals from NASA’s Innovative Advanced Concept (NIAC) program. “Among this year’s NIAC grants,” Oberhaus writes, “are proposals to turn a lunar crater into a giant radio dish, to develop an antimatter deceleration system, and to map the inside of an asteroid. But the most eye-popping concept of the bunch was advanced by Slava Turyshev, a physicist at NASA’s Jet Propulsion Laboratory who wants to photograph an exoplanet by using the sun as a giant camera lens.”

There is much more specific information in Oberhaus’s piece—about gravitational lensing, etc. etc.—but the following detail is killer. “Unlike a camera lens,” we read, “the sun doesn’t have a single focal point, but a focal line that starts around 50 billion miles away and extends infinitely into space. The image of an exoplanet can be imagined as a tube less than a mile in diameter centered on this focal line and located 60 billion miles away in the vast emptiness of interstellar space. The telescope must align itself perfectly within this tube so that you could draw an imaginary line from the center of the telescope through the center of the sun to a region on the exoplanet.”

Cameras in space, waiting to be discovered—or where astronomy and cinematography become the same pursuit.

Seen this way, the solar system is more like a maze of optical effects, a topology of entangled image-tubes and horizon lines, of gravitational mirages streamed from one side of the galaxy to the next, torqued, lensed, and ribboned into geometric shapes we then struggle to unknot with the right billion-dollar instrumentation.

Along those lines, recall this excellent post on Xenogothic following last year’s unprecedented “photo” taken of a black hole. According to Xenogothic, this curious anti-photo depicting the absence of light reveals “the true, formless nature of photography and our photographies-to-come… The further out into the imperceptible universe we reach, the quicker we must get used to seeing images which are ostensibly not-for-us.” Imaging black holes is art history by other means.

[Image: Black hole, via Xenogothic.]

In fact, all of this reminds me of one of my favorite museums in the world, the National Museum of Cinema in Turin, Italy, which begins its history of cinema with a display of circular mirrors, anamorphic paintings, perspectival diagrams, and other optical tricks that, in the proper historical context, seem indistinguishable from magic. The birth of “cinema,” we might say, occurred when someone distorted light with mirrors; its origins are rooted in illusion and reflection, not projection and electricity.

In any case, imagine magicians of the near-future, performing for audiences aboard relativistic spacecraft, making stars disappear by manipulating image-tubes in the voids between planets. Gravitational lensing will pass from a niche science into popular spectacle.

And then, of course—the inevitable next step in a Christopher Priest novel—these magical effects of stellar camouflage, Xenogothic’s “photographies-to-come,” will become weaponized, militarized, transformed into tools for catastrophically redirecting light through space and extinguishing distant worlds.

From an optical effect in the prehistory of cinema to relativistic gravitational lensing in the abstracts of NASA to future galactic conquerors casually folding closed their image-tubes and making entire planets disappear.

Synthetic at Every Scale

[Image: Diamond nanowires produced by physicist William Gilpin, used only for the purpose of illustration.]

As part of some early prep, just putting notes together for a workshop I’ll be leading in Moscow later this summer, I thought I’d link back to this 2014 post by Paul Gilster on Centauri Dreams about “SETI at the Particle Level”—that is, the Search for Extraterrestrial Intelligence reimagined on radically different spatial scales than what humans have previously looked for.

“To find the truly advanced civilizations, we would need to look on the level of the very small,” Gilster suggests. We perhaps even need to look at the scale of individual particles.

“If SETI is giving us no evidence of extraterrestrials,” Gilster writes, “maybe it’s because we’re looking on too large a scale.”

What if, in other words, truly advanced intelligence, having long ago taken to non-biological form, finds ways to maximize technology on the level of the very small? Thus [Australian artificial intelligence researcher Hugo de Garis]’s interest in femtotech, a technology at the level of 10-15 meters. The idea is to use the properties of quarks and gluons to compute at this scale, where in terms of sheer processing power the improvement in performance is a factor of a trillion trillion over what we can extrapolate for nanotech.

Material evidence of this speculative, femto-scale computation could perhaps be detected, in other words, if only we knew we should be looking for it. (Instead, of course, we’re stuck looking for evidence of a very particular technology that was big on Earth a few decades ago—radio waves.)

[Image: Electron interferometry, via the University of Cambridge, used only for the purpose of illustration.]

In any case, it’s interesting to put these thoughts in the context of a paper by Matt Edgeworth, published in Archaeologies back in 2010, called “Beyond Human Proportions: Archaeology of the Mega and the Nano.” Edgeworth’s paper was inspired by a deceptively simple insight: that human artifacts, in our era of chemical and material engineering, have departed radically from the spatial scale traditionally associated with archaeology.

We are always making history, we might say, but much of it is too small to see.

Rather than studying architectural ruins or sites the size of villages, what about archaeological artifacts visible only through chemical assays or scanning electron microscopes, whether they be so-called forever chemicals or simply microplastics?

Edgeworth himself refers to nano-scale transistors, graphene sheets, and materials etched using electron beam lithography. What role should these engineered materials—altogether different kinds of remains or cultural “ruins”—play in archaeology?

[Image: An example of electron beam lithography, via Trevor Knapp/Eriksson Research Group/University of Wisconsin, used only for the purpose of illustration.]

“It used to be the case that archaeological features and artifacts were principally on a human scale,” Edgeworth writes. “But that familiar world is changing fast. As archaeology extends its range of focus further forward in time its subject matter is moving beyond human proportions. Developments in macro- and micro-engineering mean that artifacts are no longer limited in size by physical limitations of the body. As scale and impact of material culture extends outwards and inwards in both macroscopic and microscopic directions, the perspectives of contemporary archaeology must change in order to keep track.”

What’s so interesting about both the Centauri Dreams post and Matt Edgeworth’s paper is that signs of artificiality—whether they are human or not—might be discovered at radically different spatial scales, either here on Earth in modern archaeological sites or in the depths of space, where, for example, the alien equivalent of electron beam lithography might already have etched legible patterns into materials now drifting as micrometeoroids through the void.

Of course, the idea of applying for a grant to look for signs of alien lithography on micrometeoroids sounds more like a Saturday Night Live sketch—or perhaps the plot of a Charles Stross novel—but that doesn’t mean we shouldn’t do it (or something similar). After all, even humans themselves now leave micro- and nano- scale material traces behind in the dyes, chemicals, coatings, and etched materials we use everyday without thinking of these things as archaeological.

[Image: Nanostructures made by German company Nanoscribe, used only for the purpose of illustration.]

If the fundamental assumption of SETI is that aliens have been communicating with each other through radio transmissions because humans used to heavily rely upon that same technology, then why not also assume that aliens are, say, manufacturing graphene sheets, 3D-printing on the nano-scale, or, for that matter, weaving computational textiles with synthetic-diamond nanowires?

(An unrelated post that is nevertheless interesting to think about in this context: Space Grain.)

Tone Fields Larger Than Stars

[Image: From “Probing Cosmic-Ray Transport with Radio Synchrotron Harps in the Galactic Center,” by Timon Thomas, Christoph Pfrommer, and Torsten Enßlin.]

The above image, as described by Susanna Kohler over at AAS Nova, depicts an ultra-large-scale magnetic “harp” near the center of our galaxy, emitting radio waves. The black lines apparently “span several light-years.”

As Kohler writes, where the parenthetical comments are her own, “a team of scientists argues that this cosmic music is caused by a massive star or a pulsar (a magnetized neutron star) plunging through an ordered magnetic field in the galactic center. As the star crosses (moving upward, in the image above) bundles of field lines, it discharges high-energy cosmic rays that travel in either direction along the bundles, emitting radio waves.”

It’s a kind of cosmic theremin—an instrument where the “musician controls volume and pitch using her hands to interfere with electromagnetic fields generated by the device”—a huge and ancient instrument playing itself in space.

Light in the Time of a Digital Sun

[Image: “Gnomo” by Jonathan Enns.]

There’s a cool project in the most recent issue of Site Magazine, by Jonathan Enns, an architectural designer and professor at the University of Waterloo.

In a short text written for Site, Enns describes the project as a proposal for a 12-meter-tall solar clock, a monolithic sandstone pillar whose sculpted form would combine ancient methods of timekeeping with digital fabrication.

“The resulting parametric script,” Enns writes, “which begins with the hourly solar location data and subtracts a channel of sandstone from the column for each hour, produces a complex Swiss cheese of voids that are unique to the latitude, longitude, and elevation of the design site.”

[Image: “Gnomo” by Jonathan Enns.]

It would be incredibly interesting to see this approach applied to blocks of sandstone of varying heights, depths, and dimensions, producing what I imagine might be complex, vertebral stacks of perforation and shadow, alternately as broad and imposing as medieval watch towers or as diminutive and fragile as flutes of ornament hidden on the corners of existing buildings.

As the chronographic marks surrounding the pillar also seem to indicate, the graphic possibilities for telling time with this are presumably endless—colors, patterns, arcs, loops, textures, materials.

For now, the newest issue of Site is not online, but click through to Enns’s own portfolio for a bit more.

(Earlier, this post wrongly claimed that the University of Waterloo is in Toronto; it is not. It is nearly an hour west of Toronto.)

Exotempestology

Purely in terms of extreme landscapes, this planet is certainly one of the most notable: eight times the mass of Jupiter, but starless, adrift, an “orphaned world” without a sun, “somehow shot out of its orbit” into the darkness of space, its skies thundering with storms of molten metal.

(Story is from 2015, but randomly rediscovered this morning in my bookmarks.)

Strange Precipitation

It’s not only snow falling from the sky this winter, but microplastics, a holiday season marked by petrochemical drifts accumulating on our windowsills and roadsides.

European researchers have found much more than just plastics, in fact, snowing down on our shoulders: “Acrylates/polyurethanes/varnish/lacquer (hereafter varnish) occurred most frequently (17 samples), followed by nitrile rubber (16 samples), polyethylene (PE), polyamide, and rubber type 3 (13; ethylene-propylenediene rubber).”

That’s plastic, rubber, varnish, lacquer, and polyethylene—a true precipitation of the Anthropocene—snowing from the sky, as if we’ve embalmed the weather. Zombie snow.

Meanwhile, it seems as if snow itself is being redefined by these studies. For example, every winter, terrestrial landscapes are buried not just by crystals of frozen water, but by the remains of dead stars.

In what would read like a poem in any other context, ScienceNews reports that “exploding stars scattered traces of iron over Antarctic snow.” In other words, metallic fragments of dead stars can be found sprayed across ice at the bottom of our world.

This has cosmic implications:

The result could help scientists better understand humankind’s place in space. The solar system resides within a low-density pocket of gas, known as the local bubble. It’s thought that exploding supernovas created shock waves that blasted out that bubble. But the solar system currently sits inside a denser region within that bubble, known as the Local Interstellar Cloud. The detection of recently deposited iron-60 suggests that this cloud may also have been sculpted by supernovas, the researchers say.

Sculpted by supernovas. We exist within that space, once carved by the detonations of stars whose metallic remains snow down onto dead continents, forming drifts—someday, entire glaciers—of plastic, rubber, polyethylene, and more.

(Image: Snow, via the Adirondack Almanac. Related: Space Grain.)

Folktales for the Offworld

The vocabulary in this new book on Extraterrestrial Construction Techniques is amazing, from the design of “Earth-independent habitats” to the use of “space-native metals” and other “non-terrestrial construction materials in the alien environment of space.”

The full manuscript also contains a section on “high-fidelity simulants”—another great phrase—as well as one on artificial crystal-growth techniques in space. Here, the ideas themselves are architecturally evocative: “It is envisioned that fragments of bio-like materials could be launched in an inactive state during space flight, and once landed at the Moon or Mars, would start to grow into construction materials or even pre-engineered habitats.” Controlled crystal architecture!

You can easily imagine some new version of Jack and the Beanstalk, about a relentlessly growing crystal building, a future folktale for life in space.

Have Clock, Will Travel

[Image: From The Hunt For Red October, via Quora].

There’s a line in The Hunt For Red October where a submarine navigator jokes, “Give me a stopwatch and a map, and I’ll fly the Alps in a plane with no windows.” I was reminded of that comment by reports of a new atomic clock that will allegedly enable “futuristic navigation schemes”:

“Every single spacecraft exploring deep space today relies on navigation that’s performed back here at Earth,” said [Jill] Seubert, who’s based at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Earth-based antennas send signals to spacecraft, which the spacecraft echo back. By measuring a signal’s round-trip time within a billionth of a second, ground-based atomic clocks in the Deep Space Network help pinpoint the spacecraft’s location.

With the new Deep Space Atomic Clock, “we can transition to what we call one-way tracking,” Seubert said. A spaceship would use such a clock onboard to measure the time it takes for a tracking signal to arrive from Earth, without having to send that signal back for measurement with ground-based atomic clocks. That would allow a spacecraft to judge its own trajectory.

One might say that the ship is navigating time as much as it is traveling through space—steering through the time between things rather than simply following the lines that connect one celestial object to another.

The general problem of ship orientation and navigation in deep space is a fascinating one, and it has led to ideas like using “dead stars” as fixed directional beacons, a kind of thanato-stellar GPS. This is “the long-sought technology known as pulsar navigation,” Nature reported last year. “For decades, aerospace engineers have dreamed of using these consistently repeating signals for navigation, just as they use the regular ticking of atomic clocks on satellites for GPS.” You head toward something that’s only consistent because it’s dead.

There is something really interesting here, where human navigators and their far-flung machines are confronted with a landscape so vast it is all but devoid of local landmarks. Imagine the cognitive skills necessary for early humans to wander forth, on foot, across colossal and empty steppes, long before modern navigational tools, or picture autonomous, near-frozen hard-drives falling endlessly outward toward stars they might never reach: these scenarios lend themselves to metaphor just as much as they present real-world cartographic problems masked as an encounter with landscapes impossibly huge.

A landscape so big it becomes time, and only a clock can conquer it; or a space so empty, its only fixed points are long dead.