Lost Animals

I don’t normally link to my short stories here, but I’m proud of a new one called “Lost Animals” that went up earlier this week. It’s about a man hired by private clients to clear houses of ghosts, not using supernatural equipment but a baseball bat.

He’s been storming into abandoned homes, haunted offices, auto-repair yards, and even millionaires’ yachts all over the country, using aggression to overcome his own fears and maintain the upper hand.

The times ghosts truly scare me aren’t from the shock of a dead face staring up from the bottom of a basement staircase; I’m usually too drunk or high for that, too hyped up on aggression. I’ll simply charge at the thing, running after it into a root cellar or climbing a wooden ladder into an unlit barn attic to chase it away. The sights that genuinely unsettle me, that keep me awake at night, are the weird, demented loops I sometimes catch them in, the bleakness of a ghost’s new existence, the never-ending isolation of the afterlife, empty versions of ourselves stuck in routines that have lost all meaning.

After nearly two decades of this—scaring dead people out of their comfort zones—he experiences a slow change of attitude that affects his ability to do the job.

It’s only loosely architectural, but I thought I’d link it here anyway, as the story explores a wide range of spatial situations amenable to hauntings. Check it out, if you’re in the mood for an autumnal read at the height of summer.

[Photo in top image courtesy of U.S. Library of Congress.]

Impact Gardening

Impact gardening” is the evocative term used to describe surface disturbance—and potential biological effects—caused by the crashing of extraterrestrial objects into planetary bodies.

[Image: The surface of Europa, including “the kind of areas churned by impact gardening.”]

These impacts can “churn” or, in effect, plow the surface, exposing previously buried materials to solar radiation—which, in turn, can break down and even sterilize any life thriving there—but it can also push potential organic matter “downward, where it could mix with the subsurface,” almost like planting seeds, according to a short feature published today by NASA.

“If we hope to find pristine, chemical biosignatures,” planetary researcher Emily Costello explained to NASA, “we will have to look below the zone where impacts have been gardening.”

Distant planetary landscapes, gardened by impacts.

Read more over at NASA—I’m honestly just posting this for the poetry of the phrase impact gardening

(Somewhat related: Life on the Subsurface: An Interview with Penny Boston.)

Fractalize Me

The genes that cause Romanesco, a kind of cauliflower, to grow in a fractal pattern have been identified. Researchers were subsequently able to manipulate one of those genes and get it to function inside another plant—thale cress—producing fractal blooms.

The language used to describe this is interesting in its own right—a vocabulary of memory, transience, perturbation, and abandoned flowering.

In the words of the researchers’ abstract, “we found that curd self-similarity arises because the meristems fail to form flowers but keep the ‘memory’ of their transient passage in a floral state. Additional mutations affecting meristem growth can induce the production of conical structures reminiscent of the conspicuous fractal Romanesco shape. This study reveals how fractal-like forms may emerge from the combination of key, defined perturbations of floral developmental programs and growth dynamics.”

It’s the fact that this gene appears to function in other plants, though, that is blowing my mind. Give this technique another ten or twenty years, and the resulting experiments—and the subsequent landscapes—seem endless, from gardens of infinitely self-similar roses and orchids to forests populated by bubbling forms of fractal pines, roiling oaks, and ivies.

Until, of course, the gene inevitably escapes, going mobile, infecting insects and animals, producing confused anatomies in fractal landscapes, like minor creatures in a Jeff VanderMeer novel, before breaching the human genome, and oracular multicephalous children are born, their bodies transitioning through monstrosities of self-reminiscence and new limbs, mythological, infinitely incomplete, cursed with endless becoming.

In any case, read more over at ScienceNews, and check out the actual paper at Science.

Xolographic Biology

[Image: Plankton via the Seattle Aquarium.]

The description of this new 3D-printing technique, published in Nature, is immensely evocative. The process “relies on chemical reactions triggered by the intersection of two light beams,” using that light “to rapidly solidify an object in a volume of a liquid precursor.”

Its developers call it xolography “because it uses two crossing (x) light beams of different wavelengths to solidify a whole object (holos is the Greek word for whole).”

But the whole thing sounds like some weird new metaphor for the origins of biology: light shining into susceptible chemistries in a warm little pond somewhere, synthesizing into slowly-growing forms. From the Miller-Urey experiment to photosynthetic 3D printing.

The ensuing mechanics are hardly poetic, but are nevertheless worth reading:

A rectangular sheet of light with a set thickness is shone through a volume of a viscous resin. The wavelength of the light is chosen to excite molecules known as dual-colour photoinitiators (DCPIs) dissolved in the resin by cleaving a molecular ring in the backbone of the molecule; this reaction occurs only within the sheet of light.

A second beam of light projects an image of a slice of the 3D object to be printed into the plane of the light sheet. The wavelength of the second beam is different from that of the first and causes any excited DCPI molecules to initiate polymerization of the resin, solidifying the slice. The resin volume is then moved relative to the position of the light sheet, which is fixed. This changes the position of the light sheet in the resin, so the activation and initiation processes can begin again at a new position, thereby building up the object slice by slice.

Forms emerging as if from nowhere, out of intersecting planes of light—or beams passing through one another in the shallow waters of a sea, materializing into bodies. Tiny little plankton drifting in the sun.

Anyway, to use such an interesting process simply to 3D-print new children’s toys or architectural parts seems both anticlimactic and strangely on par with our world, which is already so good at hiding interesting metaphors in the everyday objects around us.

Departure

[Image: From Deep Unlearning (I), Sascha Pohflepp].

I woke up to the sad news this weekend that my friend, designer Sascha Pohflepp, has died. Sascha’s work was animated by such a good-natured inquisitiveness and sense of intellectual freedom, a grinning need to ask more questions about the objects, systems, and things before him—what they could be, what they should be, what they would be with the right amount of effort—that you could actually see it in his bearing, his near-constant smile, and a kind of amused sense that he didn’t quite believe what you were saying.

Sascha described his work as exploring “questions regarding the role of technology as a force that shapes our relationship with natural systems, human culture and ultimately ourselves, embodied in the tools we create.” His work required friends, others, collaborators; in Sascha’s words, “Almost every piece is grounded in joint efforts with researchers from the respective scientific fields and more often than not with peers as long-time collaborators. This emerges from a personal conviction that a truly satisfying understanding of the world and our role in it will not be achieved by a single perspective alone.”

Details are thin, but he seems to have died in his sleep in Berlin; he was 41.

Seedling

[Image: From 2001: A Space Odyssey].

There’s a poem I think about every once in a while called “For the Missing in Action,” by John Balaban, from his book Locusts at the Edge of Summer. In fact, I’ve written about it here before.

In it, Balaban describes the postmortem landscape effects of someone—possibly a U.S. soldier, possibly a local villager—killed in the Vietnam War. The person’s body “fertilized the earth” as it decayed for months after death, vegetation assuming the body’s outline in the landscape.

In that dead place the weeds had formed a man
where someone died and fertilized the earth, with flesh
and blood, with tears, with longing for loved ones.
No scrap remained; not even a buckle
survived the monsoons, just a green creature,
a viney man, supine, with posies for eyes,
butterflies for buttons, a lily for a tongue.

I thought of Balaban’s poem again a few months ago when I read a story published by the Mirror—otherwise quite possibly the world’s least-interesting newspaper—about a missing Turkish man whose body was discovered in a cave 40 years after his disappearance due to a fig tree rooted in the man’s remains.

“A missing man who was murdered more than 40 years ago has been found—after a seed from a fig in his stomach grew into a tree,” the paper reported. The man had apparently eaten a fig before he died, and the seeds soon germinated.

The sequence of events that led to this Balabanian discovery included the botanical clue of the tree itself, which was apparently so unusual for the area that its presence required a more implausible explanation. Further, the man was murdered in the cave with two others, “killed by dynamite that was then thrown in after them. Yet the dynamite also blew a hole in the side of the cave, allowing light to flood into the darkened interior which in turn allowed the fig tree to grow from the man’s body.”

Our corpses have landscape effects, blooming with new ecologies after we’re gone.

Briefly, I’m reminded of a blog post published by Astronomy back in 2016 that took this thought interplanetary, asking, “Could an astronaut’s corpse bring new life to another world?” If our bodies can seed fig trees and flower into weedy outlines in the jungle, could we also become origin points for life on other worlds?

If you can “imagine a human corpse seeding life across the cosmos,” the article explains, then there might be much larger timescales over which it can do so, despite the seemingly insurmountable barrier of interstellar radiation: “The longer your corpse is floating in space, the more ambient cosmic radiation it’s absorbing. Enough radiation will scramble an organism’s DNA and RNA with mutations, ‘and unless those mutations can be repaired during the transit, at a rate equal to the mutations you’re accumulating, well then survival becomes questionable,’ [microbial biologist Gary King] says. ‘When you talk about one-million-plus years with little radiation shielding, then I’d say we’re talking about a very limited possibility of microbial survival. But I won’t say impossible, if you only need one of the vast number of microbes on the human body to survive the trip.’”

Mutant landscapes of the far future seeded by the bodies of drifting astronauts, a genesis moment for new planetary lifelines like ghostly human shapes appearing in the woods.

Vernacular Vermicular

[Image: Photo by Pierre Gros, via Creative Commons CC-BY 4.0/Washington Post].

France is apparently writhing with “giant predatory worms,” previously unnoticed but hiding in plain sight since at least 1999.

“Hammerhead flatworms, which grow to a foot or more in length, do not belong in European vegetable gardens,” the Washington Post reports. “‘We do not have that in France,’ said Justine, a professor at the National Museum of Natural History in Paris. The predatory worms are native to Asia, where they happily gobble up earthworms under a warmer sun.” A rash of recent spottings has revealed the truth, however, which is that the worms have made it to France—and they are apparently there to stay.

What caught my eye, however, were the details of discovery: “The oldest sighting was a home video from 1999, made by a family who kept the VHS tape for so long because the creatures on it were so bizarre. Justine [from the National Museum of Natural History] put their mystery to rest: flatworms. In 2013, a group of terrorized kindergartners claimed they saw a mass of writhing snakes in their play field: Again, flatworms. All told, these citizen scientists made 111 observations of large flatworms between 1999 and 2017.”

A crypto-species first seen on a French family’s VHS tape from 1999—it’s tailor-made for the beginning of a landscape horror story, a kind of Patient Zero of invasive wormhood caught on film, slithering through the soil of an otherwise unremarkable suburban backyard, a predatory species given the last 19 years to develop and spread.

Rootkit

[Image: Work by Diana Scherer, used to promote an event coming up on December 14th, in Wageningen, Holland, where the artist will be speaking].

The work of German-born artist Diana Scherer explores what she calls “the dynamics of belowground plant parts.” She uses plant roots themselves as a medium for creating patterns and networks, the purpose of which is to suggest overlaps between human technological activity and the embodied “intelligence” of living botanical matter. “This buried matter is still a wondrous land,” she writes.

The results are incredible. They feature roots woven like carpets or textiles, imitating Gothic ornament with floral patterns and computational arabesques underground.

[Image: “Ornament with Thistle” by Daniel Hopfer; via Wikimedia].

Compare Scherer’s work, for example, to traditional Gothic plant ornament—that is, geometric shapes meant to imitate the movements and behaviors of plants—but here actually achieved with plants themselves.

Scherer calls this “root system domestication,” where, on the flipside of an otherwise perfectly “natural” landscape, such as an expanse of lawn grass, wonderfully artificial, technical patterns can be achieved.

[Images: All images by Diana Scherer, from “Harvest: Exercises in Rootsystem Domestication”].

The idea that we could grow biological circuits and living rootkits is incredible, as if, someday, electronic design and gardening will—wonderfully and surreally—converge.

You simply step into your backyard, exhume some root matter as if harvesting potatoes, and whole new circuits and electrical networks are yours to install elsewhere.

[Image: From “Harvest: Exercises in Rootsystem Domestication” by Diana Scherer].

After all, the soil is already alive with electricity, and plants are, in effect, computer networks in waiting.

Scherer’s work simply takes those observations to their next logical step, you might argue, using plants themselves as an intelligent form-finding technology with implications for the organic hardware of tomorrow.

For more images, click through to Diana Scherer’s website, and, for those of you near Wageningen, consider stopping by the artist’s live Q&A on December 14th. Someone please commission a landscape-scale work from Scherer soon!

Supergrass, or the Anthropocene is Local

lawn
[Image: Artificial grass stretches onto a sidewalk in Somerville, MA; Instagram by BLDGBLOG].

While reading that “land use has already pushed biodiversity below the level proposed as a safe limit,” possibly setting the stage for an irreversible decline in biological variety around the world, it’s worth recalling a somewhat tragicomic article published last week warning that Britain has so many artificial lawns, these so-called permanent botanicals are now considered a threat to wildlife.

From the Guardian:

From local authorities who purchase in bulk for use in street scaping, to primary schools for children’s play areas and in the gardens of ordinary suburban family homes, the sight of pristine, green artificial grass is becoming a familiar sight. One company has registered a 220% year-on-year increase in trade of the lawns.
But as families, councils and schools take to turfing over their open spaces with a product which is most often made from a mix of plastics—polypropylene, polyurethane and polyethylene—there is growing alarm amongst conservationists and green groups.
They say the easy fix of a fake lawn is threatening the habitat of wildlife, including butterflies, bees and garden birds as well as creating waste which will never biodegrade.

I’m reminded of the artificial gardens of Don DeLillo’s new novel, Zero K, where plastic trees and flowers tremble lifelessly in an air-conditioned breeze, installed as part of a remote desert complex devoted to human immortality.

Only here, it’s the everyday landscape of Britain, slowly but surely being plasticized, replaced by a chemical surrogate for living matter, this ubiquitous manufactured stand-in for the picturesque English gardens of an earlier generation.

Lost butterflies flutter over plastic lawns, smelling nothing but petrochemicals. Bees land on the petals of polyester flowers and pick up the dust of industrial dyes rather than pollen. Excess drops of translucent glue glow in the afternoon sunlight.

The anthropocene is not only a global transformation; it takes place in—it takes the place of—your own backyard.

(Vaguely related: In the Garden of 3D Printers).

The Architecture of Delay vs. The Architecture of Prolongation

timeship
[Image: A rendering of the “Timeship” cryogenic facility by architect Stephen Valentine, via New Scientist].

The primary setting of Don DeLillo’s new novel, Zero K, is a cryogenic medical facility in the mountainous deserts of Central Asia. There we meet a family that is, in effect, freezing itself, one by one, for reawakening in a speculative second life, in some immortally self-continuous version of the future.

First the mother goes; then the father, far before his time, willfully and preemptively ending things out of loneliness; next would be the son, the book’s ostensible protagonist, if he didn’t arrive with so many reservations about the procedure. Either way, it’s a question of what it means to delay one thing while prolonging another—to preserve one state as a means of preventing another from setting in. One is a refusal to let go of something you already possess; the other is a refusal to accept something you don’t yet have. An addiction to comfort vs. a fear of the new.

Without getting into too many of the book’s admittedly sparse details, it suffices to say that Zero K continues many of DeLillo’s most consistent themes—finance (Cosmopolis), apocalyptic religion (Mao II), the symbolic allure of mathematical analysis (Ratner’s Star).

What makes the book worth a mention here are some of the odder details of this cryogenic compound. It is a monumental space, described with references both to grand scientific and medical facilities—think the Salk Institute, perhaps—as well as to postmodern religious centers, this desert megachurch of the secular afterlife.

Yet its strangest details come from the site’s peripheral ornamentation: there are artificial gardens, for example, filled with resin-based and plastic plant life, and there is a surreal distribution of lifeless mannequins throughout the grounds, standing in penitential silence amongst the fake greenery. Unliving, they cannot die.

These stylized representations of biology, or replicant life forms that come across more like mockery than mimicry, expand the novel’s central conceit of frozen life—life reduced to absolute stillness, placed on pause, in hibernation, in temporal limbo, preserved—out into the landscape itself. It is an obvious symbolism, which is one of the book’s shortcomings; these deathless gardens with their plastic guards remain creepily poetic, nonetheless. These can also be seen as fittingly cynical flourishes for a facility founded on loose talk of singularities, medical resurrection, and quote-unquote human consciousness, as if even the designers themselves were in on the joke.

Briefly, despite my lukewarm feelings about the actual novel, I should say that I really love the title, Zero K. It is, of course, a thermal description—or zero K, zero kelvin, absolute zero, cryogenic perfection. Yet it is also refers to an empty digital file—zero k, zero kb—or, perhaps more accurately, a file saved with nothing in it, thus seemingly a quiet authorial nod to the idea that absolutely nothing about these characters is being saved, or preserved, in their quest for immortality. And it is also a nicely cross-literary reference to Frank Kafka’s existential navigator of European political absurdity, Josef K. or just K. From Josef K. to Zero K, his postmodern replacement.

The title, then, is brilliant—and the mannequins and the plastic plant life found at an end-times cryogenic facility in Central Asia make for an amazing set-up—but it’s certainly not one of DeLillo’s strongest books. In fact, I have been joking to people that, if you really want to read a novel this summer written by an aging white male cultural figure known for his avant-garde aesthetics, consider picking up Consumed, David Cronenberg’s strange, possibly too-Ballardian novel about murder, 3D printing, North Korean kidnapping squads, and more, rather than Zero K (or, of course, read both).

In any case, believe it or not, this all came out of the fact that I was about to tweet a link to a long New Scientist article about a cryogenic facility under construction in Texas when I realized that I had more to say than just 140 characters (Twitter, I have found, is actually a competitor to your writing masquerading as an enabler of it—alas, something I consistently re-forget).

There, Helen Thompson takes us to a place called Comfort, Texas.

timeship2
[Image: Rendering of the “Timeship” facility by architect Stephen Valentine].

“The scene from here is surreal,” Thompson writes. “A lake with a newly restored wooden gazebo sits empty, waiting to be filled. A pregnant zebra strolls across a nearby field. And out in the distance some men in cowboy hats are starting to clear a huge area of shrub land. Soon the first few bricks will be laid here, marking the start of a scientific endeavour like no other.” A “monolithic building” is under construction in Comfort, and it will soon be “the new Mecca of cryogenics.”

Called Timeship, the monolithic building will become the world’s largest structure devoted to cryopreservation, and will be home to thousands of people who are neither dead nor alive, frozen in time in the hope that one day technology will be able to bring them back to life. And last month, building work began.

The resulting facility will include “a building that would house research laboratories, DNA from near-extinct species, the world’s largest human organ biobank, and 50,000 cryogenically frozen bodies.”

The design of the compound is not free of the sort of symbolic details we saw in DeLillo’s novel. Indeed, Thompson explains, “Parts of the project are somewhat theatrical—backup liquid nitrogen storage tanks are covered overhead by a glass-floored plaza on which you can walk surrounded by a fine mist of clouds—others are purely functional, like the three wind turbines that will provide year-round back-up energy.” And then there’s that pregnant zebra.


[Image: An otherwise totally unrelated photo of a circuit, chosen simply for its visual resemblance to the mandala/temple/resurrection facility in Texas; via DARPA].

It’s a long feature, worth reading in full—so click over to New Scientist to check it out—but what captivates me here is the notion that a sufficiently advanced scientific facility could require an architectural design that leans more toward religious symbolism.

What are the criteria, in other words, by which an otherwise rational scientific undertaking—conquering death? achieving resurrection? simulating the birth of the universe?—can shade off into mysticism and poetry, into ritual and symbolism, into what Zero K refers to as “faith-based technology,” and what architectural forms are thus most appropriate for housing it?

In fact, DeLillo presents a political variation on this question in Zero K. At one point, the book’s narrator explains, looking out over the cryogenic facility, “I wondered if I was looking at the controlled future, men and women being subordinated, willingly or not, to some form of centralized command. Mannequined lives. Was this a facile logic? I thought about local matters, the disk on my wristband that tells [the facility’s administrators], in theory, where I am at all times. I thought about my room, small and tight but embodying an odd totalness. Other things here, the halls, the veers, the fabricated garden, the food units, the unidentifiable food, or when does utilitarian become totalitarian.” When does utilitarian become totalitarian.

When do scientific undertakings become religious movements? When does minimalism become a form of political control?

Predatory Planetarium

waitomocave
[Image: Glow worms inside Waitomo Cave; photo by Jason Roehrig, via KQED].

Carnivorous glow worms catch their prey “by mimicking the night sky,” KQED reports. Think of it as a surrogate astronomy enacted to disorient other species, leading to their deaths—a predatory planetarium of creatures acting like someone else’s stars.

“The strategy is simple,” KQED explain. “Many of these insects, including moths, navigate by starlight. They keep the celestial bodies at a constant angle to fly in a straight line. ‘That works fine when the moon and stars are real,’ said Dave Merritt, a biologist at the University of Queensland in Brisbane, Australia, ‘but when the source is close they end up spiraling into it.’” When the moon and stars are real!

What a peculiar existential position to be in, needing to determine whether the night sky itself is—or is not—a decoy meant to lure and trap you.

Read more over at KQED.

(Vaguely related: The Bioluminescent Metropolis).