Light in the Time of a Digital Sun

[Image: “Gnomo” by Jonathan Enns.]

There’s a cool project in the most recent issue of Site Magazine, by Jonathan Enns, an architectural designer and professor at the University of Waterloo.

In a short text written for Site, Enns describes the project as a proposal for a 12-meter-tall solar clock, a monolithic sandstone pillar whose sculpted form would combine ancient methods of timekeeping with digital fabrication.

“The resulting parametric script,” Enns writes, “which begins with the hourly solar location data and subtracts a channel of sandstone from the column for each hour, produces a complex Swiss cheese of voids that are unique to the latitude, longitude, and elevation of the design site.”

[Image: “Gnomo” by Jonathan Enns.]

It would be incredibly interesting to see this approach applied to blocks of sandstone of varying heights, depths, and dimensions, producing what I imagine might be complex, vertebral stacks of perforation and shadow, alternately as broad and imposing as medieval watch towers or as diminutive and fragile as flutes of ornament hidden on the corners of existing buildings.

As the chronographic marks surrounding the pillar also seem to indicate, the graphic possibilities for telling time with this are presumably endless—colors, patterns, arcs, loops, textures, materials.

For now, the newest issue of Site is not online, but click through to Enns’s own portfolio for a bit more.

(Earlier, this post wrongly claimed that the University of Waterloo is in Toronto; it is not. It is in Waterloo, as its name suggests, nearly an hour west of Toronto.)


Given the right geological circumstances, brains can become glass. During the 1st-century eruption of Mt. Vesuvius, for example, one fleeing victim’s brain was allegedly vitrified, its soft, thinking tissues transformed into “small, glassy black fragments that were just attached inside the skull,” the Washington Post reports, like shards of a broken window.

[Image: Brainglass, via the Washington Post.]

These reflective fragments—little black mirrors—“contained proteins common in brain tissue, researchers found, and had undergone vitrification and transformed into glass.” That made this “the first time brains from any human or animal have been found fossilized as glass.” This, of course, could be because we haven’t been looking: what other deposits of obsidian lying around on the Earth’s surface are actually fossilized animal brains? Vitrified neurology.

In any case, I was reminded of an exhibition last summer at the Getty Villa here in Los Angeles called Buried by Vesuvius: Treasures from the Villa dei Papiri. Among the artifacts on display were these incredible “carbonized papyri,” or scrolls—ancient books—that had been turned into seemingly useless lumps of charcoal.

[Image: Carbonized papyrii on display at Buried by Vesuvius: Treasures from the Villa dei Papiri; photo by BLDGBLOG.]

The amazing thing was that, by using advanced medical imaging equipment to peer inside the lumps, researchers discovered that these previously illegible objects could be made readable again, virtually unrolled using X-ray tomography and character-recognition algorithms, to reconstruct the scrolls’ lost content. They were “able to use the medical imaging technology, which is usually used to examine soft human tissues, to detect the tiny bump of ink on the surface of a scroll without damaging the fragile artifact.”

To be honest, this is one of the coolest things I’ve ever seen—the “noninvasive digital restoration of ancient texts… hidden inside artifacts.” Otherwise mute objects given technical legibility. (A similar technique inspired one of the greatest New York Times headlines of the past few years: “Scanning an Ancient Biblical Text That Humans Fear to Open,” combining, at a stroke, H.P. Lovecraft, X-ray imaging technology, and possible Christian apocrypha.)

Stepping away from realistic technical applications for just a moment into the world of pure science fiction, it is fascinating to imagine a team of future researchers using 21st-century medical imaging techniques to scan, Jurassic Park-style, for lost thoughts lodged inside pieces of obsidian, black glass fossils of animal brain tissue, almost like the reader of unicorn skulls in Haruki Murakami’s novel Hard-Boiled Wonderland and the End of the World.

The idea that some of the rocks around us might, in fact, be glass brains—brainglass, a new mineral—neurological apocrypha awaiting decipherment, suggests a thousand new novels and storylines. Neurogeonomicon.

Black and ancient brains dreaming inside what humans mistook for geology.

Auditory Hallucinations from Offworld Megafarms

Although I’m only slowly coming around to the music itself, it is hard not to be impressed by the level of narrative engineering that went into Luke Sanger’s 2019 album Onyx Pyramid.

The music, Sanger writes, is a kind of fictional soundtrack for a landscape of offworld megafarms, where a human skeleton crew has been reporting “auditory hallucinations” amplified by the effects of an artificial atmosphere. Audio scifi.

The combination of a worldwide shift to GM crops and rising global temperatures led to a series of global disasters, destroying many natural resources and causing a permanent environmental imbalance. Earth’s leaders make the choice to outsource all food production to off-world corporately owned farm planets, known as ‘flatlands’.

These giant artificial orbs contain vast crop fields and are operated robotically. A handful of human ‘farmers’ are required to oversee operations and perform maintenance tasks. Although the environmental conditions are engineered to mimic 21st century Earth, there is no wildlife. Farmers have been reporting strange experiences of auditory hallucinations, nicknamed ‘flatland frequencies’, these are most likely a byproduct of the chemically engineered atmosphere combined with extreme isolation.

You can buy or stream the full album over at Bandcamp.

Imperial Hyperreality

[Image: PDF].

Before it was taken down yesterday, apparently following a burst of social media attention, the U.S. General Services Administration posted a purchase request for nearly one million dollars’ worth of “hyper-realistic training devices.” The devices would be used to assist Immigration and Customs Enforcement, or ICE, by stocking “a state-of-the-art tactical training facility” in whose eerie design details we perhaps glimpse what immigration enforcement operations of the near future will entail.

This new ICE training complex “will contain a multitude of basic, intermediate and hyper-realistic training devices, a tactical training warehouse, classroom facilities, and vehicle assault training area. The OFTP requirement is for hyper-realistic training devices that emulate structures the teams will encounter across the United States and Puerto Rico, including rural, residential suburban, residential urban and commercial buildings.”

Included will be a “‘Chicago’ style replica,” an “‘Arizona’ style replica,” and a “fishbowl” structure for supervised operations, each built using “Scalable, Portable, Modular” architectural techniques, such as shipping containers. These will allow ICE’s Special Response Teams “to experience combat conditions in a training environment that truly reflects real world conditions, but in a controlled, duplicatable, and dynamic setting.” Combat conditions!

The specifics are worth reading in full, as these simulations will be designed all the way down to “toys in the yard” and “dishes left on the table,” implying future “combat conditions” in the heart of the American domestic interior:

Hyper-Realistic is defined as “such a high degree of fidelity in the replication of battlefield conditions in the training environment that participants so willingly suspend disbelief that they become totally immersed and eventually stress inoculated.” Hyper-realism is a critical component to this acquisition as the details provide essential information that must be acknowledged, processed and acted upon to minimize risk to our Special Agents, Deportation Officers and SRT operators, during high-risk search and arrest warrants, fugitive operations, undercover operations, hostage rescue, gang operations, etc. For example, details like the number of dishes left on the table, toys in the yard, lighting, furniture, etc. all provide clues that allow our agents and officers to infer vital information that directly affects their safety and the potential resolution or outcome in the scenario. Learning to process this information quickly to identify whether there are children present, or how many people are currently in the structure is a necessary skill developed in training.

Law-enforcement training facilities have always fascinated me, insofar as they rely upon a kind of theatrical duplicate of the world, a ritualistic microcosm in which new techniques of control can be run, again and again, to perfection. Architecture is used to frame a future hypothetical event, but with just enough environmental abstraction that the specific crisis or emergency unfolding there can be re-scripted, often dramatically, without betraying the basic space in which it occurs. It is imperial dramaturgy.

However, simulated training environments are also interesting to the extent that they reveal what, precisely, is now considered a threat. In other words, we train for scenarios precisely when we fear those scenarios might exceed our current preparation; training, we could say, is a sign of worry. The fact that ICE is apparently—based on this document—prepping for “combat conditions” (!) in “‘Chicago’ style” structures, complete with dishes left on the table and toys left sitting outside in the yard sounds almost absurdly ominous.

The PDF originally posted to the GSO website is now available here.

(Spotted via David BondGraham.)

A Spatial History of Sleep

[Image: Fish preserved in the eternal ocean of a closed jar at the American Museum of Natural History; old Instagram by Geoff Manaugh].

Although this is a classic example of something I am totally unqualified to talk about, a recent report over at ScienceNews caught my eye, about the spatial origins of REM sleep.

In a nutshell, the paper suggests that “sleep may have originated underwater 450 million years ago,” which is apparently when “the cells that kick off REM sleep” first evolved in fish. “During REM or paradoxical sleep,” we read, “the brain lights up with activity almost like it’s awake. But the muscles are paralyzed (except for rapid twitching of the eyes) and the heart beats erratically.”

Dreaming, it’s as if ancient fish learned to pass into a different kind of ocean, a fully immersive neural environment coextensive with the one they physically swam within.

What’s so interesting about this—at least for me—is the implication that REM sleep, and, thus, by extension, the very possibility of animals dreaming, was made possible by immersion in an all-encompassing spatial environment such as the sea. In other words, it took the vast black depths of the ocean to facilitate the kind of uninterrupted, meditative stillness in which REM sleep could best occur. Those ancestral cells then survived into our own mammalian brains, and, by dreaming, it’s perhaps a bit like we retreat back into some lost experience of the oceanic.

[Image: “Sleeping Beauty” by Hans Zatzka].

In any case, the study’s authors are probably rolling their eyes at this point, but so much comes to mind here—everything from H.P. Lovecraft’s marine-horror stories and their alien call of the deep—such as “The Shadow Over Innsmouth”—to the speculative idea that there might be other spatial environments, comparable to the ocean, that, after long-enough exposure, could inspire unique neurological processes otherwise impossible in traditional environments.

I’m thinking of Jeremy Narby’s strange book, Cosmic Serpent: DNA and the Origins of Knowledge, about human culture amidst the impenetrable rain forests of the Americas, or even the long-running sci-fi trope of the human mind expanding in a psychedelic encounter with deep space.

In fact, this makes me wonder about the landscapes of other planets, and whether crushingly powerful gravitational regimes in alien superstorms or bizarre swirling ecosystems deep inside liquid rock might affect the neurological development of species that live there. What other kinds of sleep are environmentally possible? Does every planet come with a different kind of dreaming? Can the design or formation of new kinds of space catalyze new forms of sleep? Are there deeper or higher levels of the brain, so to speak, waiting to appear in radically different spatial environments?

We already have astrobiology, astrogeology, even astrolinguistics, but I wonder what it would look like to study sleep on other worlds. Exosomnology.

Mechanical Magic

[Image: “Design for the Water Clock of the Peacocks,” from the Kitab fi ma’rifat al-hiyal al-handasiyya (Book of the Knowledge of Ingenious Mechanical Devices) by Badi’ al-Zaman b. al Razzaz al-Jazari, courtesy Metropolitan Museum of Art].

Although it starts in only a few hours, if you’re in the Bay Area tonight, it sounds well-worth attending this talk by Brittany Cox at The Interval: “Horological Heritage: Generating bird song, magic, and music through mechanism.” Cox “specializes in the conservation of automata, mechanical magic, mechanical music, and complicated clocks and watches.” The event opens at 6:30pm for a 7:30pm kick-off.

And, if magical, time-telling automata are not enough, The Interval has amazing drinks.

Computational Ornament

[Image: From “Harnessing Vision For Computation” by Mark Changizi].

A few billion years ago, back in July 2008, Alexis Madrigal blogged about the design of “visual circuitry” for Wired. “A cognitive scientist wants to employ M.C. Escher’s bag of optical tricks to get your eyes to solve logic problems,” Madrigal wrote at the time, referring to the work of Mark Changizi.

Changizi’s idea, as Madrigal explained, was that “human beings can use their brain’s visual-processing abilities to solve LSAT-style logic puzzles, simply by staring at images designed to get their eyes to compute. Because this form of visual processing feels so effortless, such problems might be much easier to solve than their written counterparts.”

[Image: From “Harnessing Vision For Computation” by Mark Changizi].

These visually processed logic puzzles rely on a new form of writing, in effect, one that uses not traditional letters or typography but geometric shapes specifically angled and shaded to create optical illusions; each version of the illusion, so to speak, carries a different meaning. A whole visual grammar can thus be created, Changizi suggests.

You can read Wired—or, of course, Changizi’s own paper, “Harnessing Vision For Computation”—to understand how the system really works, but what interests me here is the possibility that designers could take a visual/computational language such as this and extrapolate a new style of architectural ornament from it.

[Image: From Geometrical Objects: Architecture and the Mathematical Sciences, 1400-1800, edited by Anthony Gerbino].

In other words, you could transform Changizi’s visual circuitry into a system of 3-dimensional architectural details that could be designed to sharpen and stimulate human cognitive abilities. Instead of playing sudoku, you and your elderly relatives could just look at the fronts of buildings and watch as waning daylight changes the shapes and angles of shadows, working out the logical implications.

At 10am, your building’s facade says one thing; at 6pm, because the shadows have shifted—that is, the Changizian circuits are now closing differently—it says something else entirely.

[Image: From Geometrical Objects: Architecture and the Mathematical Sciences, 1400-1800, edited by Anthony Gerbino].

Architecture becomes a passive cognitive environment, a logical stimulant, an object-based grammar meant to keep its inhabitants’ brains more supple.

[Image: From “Harnessing Vision For Computation” by Mark Changizi].

Whether or not this is possible or just hand-wavey bullshit, I’m totally fascinated by the idea that you could use cognitive science to design a new class of architectural ornament—not just geometry for the sake of geometry, or statuary for the sake of historical narratives, but a spur toward cognitive health in the people who gaze upon it.

Rock Impostors

[Image: Photo by Rob Arnold, courtesy National Geographic].

A new type of plastic pollution has been discovered, “hiding in plain sight on the beaches of southern England,” National Geographic reports. These are “rocks [that] aren’t rocks at all,” we read, but “rock impostors” made from heavily weathered plastic, colored with streaks of lead and chromium.

“Because they look geological,” environmental scientist Andrew Turner told the magazine, “you could walk by hundreds of them and not notice.”

(Previously: Welcome to the World of the Plastic Beach and Intermediary Geologies.)


Purely in terms of extreme landscapes, this planet is certainly one of the most notable: eight times the mass of Jupiter, but starless, adrift, an “orphaned world” without a sun, “somehow shot out of its orbit” into the darkness of space, its skies thundering with storms of molten metal.

(Story is from 2015, but randomly rediscovered this morning in my bookmarks.)