Easy Freeze

[Image: Fortress of Solitude from Superman, via the Superman Wiki].

Writing for Ars Technica, Jennifer Ouellette reports on “an exotic form of ice dubbed ‘ice VII’ that physicists can create in the laboratory.” It is apparently capable of “freezing an entire world within hours.”

Ice VII can only be created under conditions of literally unearthly pressure: its “oxygen atoms are arranged in a cubic shape, something that only occurs at pressures more than 10,000 times that on Earth’s surface. It’s created in the lab by zapping thin samples of water sandwiched between plates with high-intensity shock waves or laser pulses.”

Those “high-intensity shock waves” surge through water at enormous speed, rearranging the atoms in what sounds a bit like the cracking of a whip. Indeed, as one of the scientists who discovered Ice VII explains, the ice “forms in a very unusual way—by popping into existence in tiny clusters of about 100 molecules and then growing extremely fast, at over 1,000 miles per hour.”

Although we are obviously talking about a physical process unattainable outside constrained laboratory conditions, it is nonetheless interesting to imagine this being controlled somehow and used in the wild here on Earth to create, say, instant ice bridges, pop-up hockey rinks, or other architectural spans and structures flash-frozen into existence at 1,000 miles per hour.

Cathedrals made of ice surge up from lakes in the Florida panhandle to the cries of stunned passers-by.

Read more at Ars Technica or Physical Review Letters.

Anticipatory Libraries of Other Worlds

[Image: The mineral library, via ESA].

A team of “European planetary geologists and young scientists” is assembling a mineral library to help future astronauts identify rocks on other worlds. “The goal,” according to the European Space Agency, “is to create a database of all known rocks and minerals on the Moon, Mars and meteorites surfaces for easy identification.”

This collection, assembled in anticipation of discoveries made far from Earth, can then be used as a basis of forensic identification and formal comparison. We will know future worlds through anticipatory fragments we have collected here on Earth.

Although this particular “library” appears to be part of a specific training course, the ESA blog post about it links onward to what I believe is a separate institution, one called—incredibly—the Planetary Terrestrial Analogues Library.

There, the chemical spectra of rocks are analyzed to help understand “the mineralogical and geological evolution of terrestrial planets.” This, again, prepares humans and their robotic intermediaries to encounter landscapes so alien they cannot be understood at first glance, yet similar enough to our home world we can still work out what they’re made of.

Speculative Mineralogy

[Image: An otherwise unrelated image of crystal twinning, via Geology IN].

It’s hard to resist a headline like this: writing for Nature, Shannon Hall takes us inside “the labs that forge distant planets here on Earth.”

This is the world of exogeology—the geology of other planets—“a research area that is bringing astronomers, planetary scientists and geologists together to explore what exoplanets might look like, geologically speaking. For many scientists, exogeology is a natural extension of the quest to identify worlds that could support life.”

To understand how other planets are made, exogeologists are synthesizing those planets in miniature in the earthbound equipment in their labs. Think of it as an extreme example of landscape modeling. “To gather information to feed these models,” Hall writes, “geologists are starting to subject synthetic rocks to high temperatures and pressures to replicate an exoplanet’s innards.”

Briefly, it’s easy to imagine an interesting jewelry line—or architectural materials firm—using fragments of exoplanets in their work, crystals grown as representations of other worlds embedded in your garden pavement. Or fuse the ashes of your loved ones with fragments of hypothetical exoplanets. “Infinite memorialization,” indeed.

In any case, recall that, back in 2015, geologist Robert Hazen “predict[ed] that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be duplicated anywhere in the cosmos.” As Hazen claimed, “Earth’s mineralogy is unique in the cosmos.” If we are, indeed, living in mineralogically unique circumstances, then this would put an end to the fantasy of finding a geologically “Earth-like” planet. But the search goes on.

This is not the only example of producing hypothetical mineral models of other worlds. In 2014, for example, ScienceDaily reported that “scientists for the first time have experimentally re-created the conditions that exist deep inside giant planets, such as Jupiter, Uranus and many of the planets recently discovered outside our solar system.” Incredibly, this included compressing diamond to a concentration denser than lead, using a giant laser.

Other worlds, produced here on Earth. Exoplanetary superdiamonds.

Read more over at Nature.

(Nature article spotted via Nathalia Holt).

Alien Geology, Dreamed By Machines

[Image: Synthetic volcanoes modeled by Jeff Clune, from “Plug & Play Generative Networks,” via Nature].

Various teams of astronomers have been using “deep-learning neural networks” to generate realistic images of hypothetical stars and galaxies—but their work also implies that these same tools could work to model the surfaces of unknown planets. Alien geology as dreamed by machines.

The Square Kilometer Array in South Africa, for example, “will produce such vast amounts of data that its images will need to be compressed into low-noise but patchy data.” Compressing this data into readable imagery opens space for artificial intelligence to work: “Generative AI models will help to reconstruct and fill in blank parts of those data, producing the images of the sky that astronomers will examine.”

The results are thus not photographs, in other words; they are computer-generated models nonetheless considered scientifically valid for their potential insights into how regions of space are structured.

What interests me about this, though, is the fact that one of the scientists involved, Jeff Clune, uses these same algorithmic processes to generate believable imagery of terrestrial landscape features, such as volcanoes. These could then be used to model the topography of other planets, producing informed visual guesstimates of mountain ranges, ancient ocean basins, vast plains, valleys, even landscape features we might not yet have words to describe.

The notion that we would thus be seeing what AI thinks other worlds should look like—that, to view this in terms of art history, we are looking at the projective landscape paintings of machine intelligence—is a haunting one, as if discovering images of alien worlds in the daydreams of desktop computers.

(Spotted via Sean Lally; vaguely related, “We don’t have an algorithm for this”).