As if all contemporary buildings have tinnitus: An Interview with Sabine von Fischer

[Image: “A tapping machine used in tests to evaluate the ability of floor coverings to reduce the transmission of impact sound from one floor to another in multi-family dwellings. Courtesy of the National Research Council Canada/Conseil national de recherches Canada,” via CCA].

[Nearly a decade ago, I wrote a series of blog posts as part of a Fellowship at the Canadian Centre for Architecture. Those posts appear to be falling into an internet memory hole, so I thought I’d reproduce lightly edited versions of some of them here, simply for posterity.]

Sabine von Fischer is an architectural historian with a specific interest in acoustics. Both Von Fischer and I were Fellows at the Canadian Centre for Architecture in the summer of 2010, where she was “researching the relationship between architecture and sound for a Ph.D.”

I was fascinated by the work she presented one afternoon during a lecture, and, later that week, I caught up with Von Fischer for a brief Q&A about her work. The following interview was originally published in 2010.

* * *

BLDGBLOG: In the most general terms, what is the topic of your dissertation?

Sabine von Fischer: The Ph.D. will be a history of 20th century architecture, with sound being the filter through which I want to look at different spatial configurations, building technologies, and the mutual effect of technologies and architecture on each other. The period that I am looking at is 1930-1970; this was a period when drastic changes in acoustic technology happened that continue to impact our environment today.

BLDGBLOG: Why do you begin in 1930?

Von Fischer: 1930 was the first publication of the tapping machine—that’s my case study for building acoustics. The 1970 date is maybe a little more vague—it’s a nice even number! But if I find other events, I might change it to 1971. [laughs]

BLDGBLOG: What was the tapping machine [seen in the image above]?

Von Fischer: The tapping machine, as it was first published in 1930 and as it was standardized in the 1960s, has five steel rods that hammer against the floor. The speed has changed a bit over time—and its speed is now standardized—but it just tramples on the floor. It’s a very basic machine.

The principle of the machine can be found in older apparatuses, such as those used in grinding food items, but this particular application was to simulate the sound of footsteps, furniture, and machines on the floors of multi-story buildings. In this form—with five hammers, which are electrically operated—it was first published in 1930, in the Journal of the Acoustical Society of America.

Everyone who has been working on building acoustics claims that, since 1923 or 1926, they’ve been doing similar tests on structure-borne sound, but almost all of those earlier tests were done with women in high-heeled shoes. High- heeled shoes make a very distinct sound. For impact-sound measurements, these women—and I have never seen a photo with a man or a documentation of a test done with a man—would wear high-heeled shoes, making a very standard noise.

Obviously, there have been comparative tests with men wearing different-soled shoes, evaluating the different ways of walking—or people who are very heavy, who produce different frequencies in the floor—but the National Bureau of Standards, in the period between the wars, had ladies in high-heeled shoes walking around inside buildings.

BLDGBLOG: Did the tapping machine put those women out of work, or was it used in parallel?

Von Fischer: I think they were replaced by the machine—but, then, people came back in over the last decades, mostly for measuring sound inside the same spaces. Because, once there is sound insulation in the floor, there’s a new problem: sound gets thrown back into the room. It’s not transmitted into the lower floors; it wanders around the same room. Especially with laminated flooring, there can be a strange sound when people are walking inside their own spaces. To test that, it’s done with people; the tapping machine wouldn’t simulate it well enough.

BLDGBLOG: I’m reminded of Nightingale floors in Japan: deliberately squeaky floors installed as a security measure against ninjas and assassins. The idea was to make the floor as acoustically noticeable as possible, rather than to mitigate its sonic properties.

Von Fischer: In Indian culture, as well, there’s a related example, where often the lady of the house would have a ring on her toes so that the other people in the house would know when she’s approaching. Different cultures have different traditions of using sound to mark someone’s presence in a building.

BLDGBLOG: Going back to your Ph.D. research, can you explain your idea of the “clairaudient building”?

Von Fischer: The “clairaudient building” is a metaphor, because normally you would say that a person is clairaudient.

BLDGBLOG: It’s like clairvoyant—clairaudient is a kind of supernatural “all-hearing”?

Von Fischer: Yes, I am using “clairaudience” to refer to early and post-war modern building systems, which transmitted sounds much more than any traditional way of building, creating problems that were unheard of before. Then, the word clairaudience, to me, also spans all of the technological machines and apparatuses that are used to broadcast sound inside architecture—speakers, microphones, intercoms, all the way up to surveillance systems and equipment. So buildings became clairaudient through technology.

BLDGBLOG: In that sense, a clairaudient building would be a space of total acoustic transparency?

Von Fischer: Yes, and I also think acoustic transparency is a quality of ambience—what became known as the “atmosphere” of a space. Very often, for example, you can observe that once rooms are silenced, other sounds are introduced artificially because, in the end, total silence doesn’t feel comfortable.

BLDGBLOG: That’s interesting—as someone who has very bad tinnitus, I need to have some kind of noise playing at night or I can’t go to sleep. So my wife—I hope!—has gotten used to the fact that we have to have fans on, even in the middle of winter, and sometimes more than one. But what’s interesting about tinnitus is that a silent room is not necessarily socially uncomfortable—in the sense that you need to think of something to say to the people around you—but, speaking only for myself, it can be acoustically uncomfortable. I can actually feel dizzy sometimes when it’s totally silent due to all the ringing in my ears.

Von Fischer: I would say that the term tinnitus can also be applied to buildings and to cities in general. I think sounds in cities and buildings have moved from being distinct signals, or individual sounds, to a constant background. There is often not one loud noise, but a mélange or a multiplicity of dampened—yet still audible—machines.

This will sound too harsh, but it’s as if all contemporary buildings have tinnitus. That’s an image I want to work on—a pathological metaphor for the state of sound in architecture.

[Image: Sulzer air-conditioning ad, ca. 1958, courtesy Sabine von Fischer/CCA].

BLDGBLOG: In your presentation you showed a photo of a man sitting at a desk, smoking a cigarette, listening to the sound of his air conditioner.

Von Fischer: Well, this is from 1958, a man being bothered by his air conditioner! The ad suggests that he should buy a new model because it’s more silent.

I’m fascinated by that image, because it visualizes the constant quest for new technologies that we need simply to make up for the downsides of the previous new technology. For instance, once rooms were air-conditioned, there was the sound of the air conditioner that we had to make up for; and, I assume, this new air conditioner in 1958 was not as silent as we are used to now—and, even today, air conditioners are not silent at all.

BLDGBLOG: The example of air conditioner noise points to an interesting line between the equipment of everyday domesticity—refrigerators, ceiling fans, air conditioning units, even tea kettles—and what could be called proto-musical instruments. They are things that you can tune to make the world quieter or more melodious.

Von Fischer: That’s definitely something I am interested in, although I think that this specific kind of sound design is something that only came after 1970.

It’s all a question of attitudes or personal taste, so tuning everyday objects can be a quite difficult enterprise. There will never be a consensus on what a good sound is. That’s why the noise regulations in cities are so rigid, because there are so many different reactions and compromises in order to avoid being a nuisance to someone.

Different sounds can also mean different things. Lawnmowers are always loud because, if a lawnmower was very quiet, maybe people wouldn’t buy it for fear that a quiet lawnmower isn’t strong enough. And men’s shavers are much louder than ladies’ shavers, even though they do the same thing. There are a bunch of products around us that are already heavily sound-designed.

BLDGBLOG: Even police sirens are being redesigned. In New York City, for instance, a new siren called the “Rumbler” was introduced last autumn that uses subwoofers and heavy bass to cut through urban noise (and through the music you might be listening to in your car). It’s like sonic warfare—noise v. noise.

Von Fischer: There was also a project by Max Neuhaus, from the 1970s, where he designed new sirens for emergency vehicles in New York City. His contention was that drivers and pedestrians in the city could not locate where the existing siren sounds were coming from. You would hear a siren somewhere but not know where it was. So he designed a better sound that, he claimed, you could hear which direction it was coming from. He invested a lot in the project, and I think he was quite frustrated when it never made it into the actual system.

BLDGBLOG: Finally, when it comes to specific resources here at the CCA, are you here more for the research & writing time, or is there a specific object or text in the archives that you came to see?

Von Fischer: It’s primarily to have the freedom to really think and focus, but there are things that I want to look at. The archive here is very strong in post-war visionary projects, and I’m looking at their ideas of utopia and the role of technology in buildings and interiors. I’m interested in the audio component of the social utopias of the 1960s—to see what role sound played in projects of this period. One famous example would be François Dallegret’s illustrations for Reyner Banham’s text “A Home is not a House” from 1965.

The Archigram of Mammoth Bones

[Image: Illustration depicting mammoth bone architecture; illustrator unknown].

[Nearly a decade ago, I wrote a series of blog posts as part of a Fellowship at the Canadian Centre for Architecture. Those posts appear to be falling into an internet memory hole, so I thought I’d reproduce lightly edited versions of some of them here, simply for posterity.]

In Steven Mithen’s fantastic book After the Ice, a natural history of human culture from 20,000–5,000 BC, we find a brief introduction to the earliest architectural structures. “The world at 20,000 BC is inhospitable,” Mithen writes, “a cold, dry and windy planet with frequent storms and a dust-laden atmosphere… People survive wherever they can, struggling with freezing temperatures and persistent drought.”

Their survival is assisted by the construction of shelters—architecture at its very Ice Age origins.

For instance, “five dwellings form a rough circle on the tundra,” Mithen writes, referring to an archaeological site in what is now Ukraine (and using the present tense that his book maintains throughout).

The dwellings are igloo-like but built from mammoth bone and hide rather than blocks of ice. Each has an imposing entrance formed by two tusks, up-ended to form an arch. The walls use massive leg bones as vertical supports, between which jawbones have been stacked chin-down to create a thick barrier to the cold and wind. Further tusks are used on the roof to weigh down hides and sods of turf that are supported on a framework of bones and branches.

Skulls are used as furniture, and animal hides line the floor and walls, in a kind of corporeal grotesque that would make Ed Gein proud. These structures formed what the Field Museum in Chicago calls—in a now-defunct link—“small villages of bone huts,” adding that, when a bone didn’t work as architecture, it could be repurposed as a musical instrument—as if predating David Byrne’s Playing the Building installation by more than twenty millennia.

[Images: Excavation grids from Mezhirich, Ukraine; from O. Soffer, “The Upper Paleolithic of the Central Russian Plain,” courtesy of Don’s Maps].

In his book The Archaeology of Animals, Simon J. M. Davis refers to these structures as a type of “osteo-architecture,” or “bone ruins.”

He goes on to explain that an archaeologist named Ivan Pidoplichko “excavated some of the most spectacular bone ‘ruins’ so far found in the Ukraine. At Mezhirich, in the Cherkassy Region for example, he found a ‘ruin’ consisting of 385 mammoth bones covering a circular area 4-5m across. Beneath these bones Pidoplichko found 4600 artefacts and an ash-filled circular pit.” Davis’s ensuing description is worth quoting in full:

In Pidoplichko’s reconstruction the building was shaped like a beehive, similar to a Chukot Yaranga or ‘skin tent’ of today. The base of the structure consisted of a circle of some 25 mammoth skulls, each arranged so that its frontal bones faced inwards (this was how he found them). Other elements which made up the foundation were 20 mammoth pelvises and 10 long bones embedded vertically in the ground. On top of these and the skulls were 12 more skulls, 30 scapulae, 20 long bones, 15 pelvises and segments of seven vertebral columns. Still higher—and presumably for holding down skins over a wooden framework—there were 35 tusks. Ninety-five mammoth mandibles, piled up in columns around parts of the foundation, may have served as a peripheral retaining wall.

Mithen speculates that these anatomical Ice Age building supplies did not come only from coordinated acts of hunting (in which slaughtering large animals would also have meant obtaining spare parts for your house, as if wooly mammoths were a kind of living Home Depot).

[Images: (top) Excavation of Dwelling 4, Mezhirich, Ukraine (1979); photo by O. Soffer, from “The Upper Paleolithic of the Central Russian Plain”; (bottom) Excavation at Mezhirich, Ukraine; photo from J. Jelinek, “The Evolution of Man,” both courtesy of Don’s Maps].

Instead, he suggests, “the river supplies building materials: bones from animals that have died in the north and had their carcasses washed downstream.” These bones thus arrived by, and were harvested from, deltaic processes of the nearby watershed, just a particularly bulky form of sediment or debris for which it was easy to find a cultural use.

There are several architectural points to be made here. First, it seems substantially more interesting to me to locate the birth of architecture in actual paleolithic practices, not in the terminological vagaries of early Greek philosophy (which seems to the prevalent mode of searching for architecture’s theoretical origins today). But what if the knee-joints of extinct megafauna are more important for the origins of architecture than Daedalus or khôra? In other words, why not perform forensic studies of mammoth bones and animal skins, and—however momentarily—put down the Plato?

As a side note, I was intrigued to see that—as of June 2010 [when this post was originally published]—the Wikipedia page for the history of architecture does not even go beyond 10,000 BC, starting instead with the Neolithic. But what of Steven Mithen, Davis’s osteo-architecture, and our bone-encircled Ukrainian forebears? At what point is an inhabitable pile of skulls considered a building?

Second, what was architectural “style” 22,000 years ago? Were there eccentric or personalized methods for tying sinew bone-to-bone, or virtuoso tactics for assembling antlers into windproof screens on difficult hillside sites? Who were the path-breakers for the time—who was the Cedric Price of animal architecture, or the Archigram of mammoth bones? By extension, what palaces of mastodon ribs have been lost to archaeology altogether? Multi-floored labyrinths of cartilage and bearskin rugs. An Early Holocene Plug-In City made from the jaws of saber-toothed tigers. Perhaps it’s time for Pamphlet Architecture to take up the subject of paleolithic home design.

Third, surely a retrospective exhibition of late Pleistocene architecture is long overdue? Even a small gallery show exploring the state of architecture 22,000 years ago would be extraordinarily interesting. At the very least, imagine the weekend outreach programs for kids.

The border between natural history and architectural design deserves more exploration, beyond the odd science museum diorama. We have been living in buildings for more than 20,000 years, if Mithen’s book is to be believed, but nearly half of that period has seemingly been thrown outside the pale of architectural history.

Buildings did not suddenly appear at 10,000 BC with the first stonemasons, woodcutters, or the advent of Greek philosophy; buildings accumulated out of the corpse-filled debris of Ice Age rivers when neurologically modern humans began to interlock and assemble bones into structures of which we have almost no physical record.

So how do we bring these structures out of material anthropology and into architectural history, where they just as equally belong?

Design Futures, Sacred Groves

[Image: From Growing A Hidden Architecture by Christian Kerrigan].

[Nearly a decade ago, I wrote a series of blog posts as part of a Fellowship at the Canadian Centre for Architecture. Those posts appear to be falling into an internet memory hole, so I thought I’d reproduce lightly edited versions of some of them here, simply for posterity.]

Toward the end of 2009, the journal Studies in the History of Gardens & Designed Landscapes published an interesting paper by garden historian Patrick Bowe, called “The Sacred Groves of Ancient Greece.”

Specialized landscapes animated by very particular forms of cultural use, sacred groves “held a significant place in ancient Greek life over ten centuries,” Bowe writes. Indeed, “They formed significant landmarks in the landscape, both urban and rural.”

Geographers described them. Poets evoked them. Philosophers discussed them. In them, natural woodland was conserved and new wood planted, primarily for religious, but also for recreational, purposes. Architectural and sculptural elements were disposed. Prominent natural features were highlighted. Some individual trees, being considered sacred, were also conserved. In these various activities, the beginnings of the Western tradition of designed landscapes can be found.

Bowe’s ensuing history of sacred groves describes these “ritual zones” of the forest in terms of “the physical aspects of sacred groves, their location and size, the different kinds of trees of which they were composed, the architectural and sculptural elements that were installed in them and the adaptation for use of some of the natural features located in them.”

This has the effect, he notes, of filling a noticeable hole in historical scholarship: “No detailed description of a sacred grove survives from ancient Greek literature. However, a compilation of the many passing and diverse references in the literature, dating from the eighth century BC”—by which Bowe means Homer—“to the second century AD”—by which he means Pausanias—“may provide us with a composite picture.”

Somewhat obviously, sacred groves don’t leave much to see in the archaeological record—”archaeological evidence is sparse,” Bowe writes with understatement—as their vegetation dies, rots, spreads, or is deliberately torn up and replaced over time (all of the above, in fact, often erase Greek sacred groves from the terrestrial record).

Landscape historians are thus left searching for other sources of information about the ancient world’s enigmatic sacred land-use patterns. Interestingly, these sources include poems and even coinage—archaeology by way of numismatics. Bowe writes that “the evidence of contemporary coins” implies what these groves might have looked like, these coins’ obverse images depicting “boundary walls and entrances,” gates and artificially arranged stone features, as certain groves were shown in miniature on the backs of these moneyed pieces.

The very idea that money might serve as a useful object of study in an art historical survey of lost landscapes is inspiringly unexpected. A visual history of landscape told entirely through coins!

In any case, Bowe assembles a list of tree species most often associated with these sacred sites, including cypress, poplar, olive, oak, cedar, willow, plane, ash, apple, pine, and even palm trees. These groves were quite varied locations, botanically speaking, and they consisted of both wild and cultivated varieties of the trees at hand.

It simply wasn’t the case that a sacred grove had to be one particular type of tree, or that it had to be wild; the sacred qualities came from how the grove was treated, used, interpreted, and even deliberately rebuilt. In the latter case, adding small architectural features, including fences and gates, or even statuettes to the grove were ways of making sacred what in other circumstances might have been a mere garden.

While Bowe’s literary-numismatic archaeology of sacred groves is already fascinating, I found myself wondering what sorts of uniquely specific groves or small forests of our own time might be seen, even if only millennia from now, as “sacred” in some way or another. The “sacred grove,” seen in this light, would really be a kind of specialized forestry service, and thus something interpretatively present in a variety of surprising sites.

After all, it is distinctly possible that a landscape now retroactively seen as sacred might not have been anything of the sort; perhaps it was simply being grown for timber; perhaps it was the subject of a property dispute; perhaps it was over-run with insects for a decade or two and thus left untouched. It should always be assumed, in other words, that ancient sites we jump to call “sacred” might actually have been utterly mundane.

Accordingly, I’ve put together a short, entirely subjective, and by no means anywhere near exhaustive list of a few speculative landscape design proposals and real-life forestry sites that strike me as particularly worthy of consideration in the context of the ancient Greek sacred grove. If, in some future catalog of lost landscapes, one of the following sites was to be listed alongside the sacred groves of a forgotten civilization, how might that transform our understanding of their intended spatial role?

Consider this list nothing more than a brief conversation-starter.

The Shapely Grove

[Image: From “Atree?” by the Bureau of Architecture, Research, and Design (BOARD)].

Rotterdam-based design firm Bureau of Architecture, Research, and Design (BOARD) recently proposed a grove of twisted and looping arboreal forms called “Atree?

[Image: From “Atree?” by the Bureau of Architecture, Research, and Design (BOARD)].

“Imagine a project that does not need to be constructed,” they write, “because—being a tree—it grows by itself.”

Such a project only needs to be planted. Therefore the transportation of the materials for such a project is very energy efficient, because as a matter of fact, no major transportation of materials is actually necessary. The only materials to be transported are the seeds for planting. And the only energy spent is to prevent hastiness and impetuousness as such a project needs a lot of time and patience to grow.

Using clip-on bioplastic molds that “can easily be transported by bike to the site and fixed simply to the trees,” along with “a fast growing willow that reaches a height of more than two meters in only one year,” BOARD’s roller coaster of a grove would put even Axel Erlandson’s so-called tree circus to shame.

[Image: From “Atree?” by the Bureau of Architecture, Research, and Design (BOARD)].

Are these formal manipulations of a traditional thicket nothing more than stylistic play—mere ornamental tweaking—or do they reveal something more fundamental about how we can relate to the growth and tending of global forests?

Further, could a grove of deliberately misshapen trees—that is, trees that have been formally remade—be archaeologically mistaken for a place of religious significance? If so, what beliefs might we assume were being celebrated in these carnivalesque examples of what Bowe would call “ritual zones”—and who might we think had constructed them? Perhaps a strange race of druidic geometers once turned their forests into prayers and diagrams.

The Moon Trees of Apollo
One of the strangest entries on this list is also very real: the so-called Moon Trees are a distributed forest of redwood, sycamore, loblolly pine, sweetgum, and douglas fir saplings grown from seeds that were taken to the moon and back as part of the Apollo space program.

Apollo 14 launched in the late afternoon of January 31, 1971 on what was to be our third trip to the lunar surface. Five days later Alan Shepard and Edgar Mitchell walked on the Moon while Stuart Roosa, a former U.S. Forest Service smoke jumper, orbited above in the command module. Packed in small containers in Roosa’s personal kit were hundreds of tree seeds, part of a joint NASA/USFS project. Upon return to Earth, the seeds were germinated by the Forest Service. Known as the “Moon Trees,” the resulting seedlings were planted throughout the United States (often as part of the nation’s bicentennial in 1976) and the world. They stand as a tribute to astronaut Roosa and the Apollo program.

Fantastically, grafts and seeds from the original Moon Trees have since been planted elsewhere, producing second-generation Moon Trees that grow freely in private backyards, public parks, and open forests around the planet.

Compare Moon Trees to the space seed program run by the Chinese government, “a mission that will expose 2000 seeds to cosmic radiation and microgravity.” These cosmically exposed seeds have since been planted here on earth, in the hope of producing a slightly ominous-sounding batch of “super-crops.”

But what about a super-forest—cosmically exposed Moon Trees grown on a continental scale, in a vast sacred grove shaped by radiation from deep space?

The Duplicative Forest

[Image: The Duplicative Forest—17,000 acres of identical trees—courtesy of Atlas Obscura].

I have written elsewhere about a place in Oregon called the duplicative forest, but it seems worth mentioning again in the present context. The “duplicative forest” is a 17,000-acre farm whose poplar trees are “all the same height and thickness,” we read courtesy of Atlas Obscura, as well as “evenly spaced in all directions. The effect is compounded when blasting by at 75 mph. If you look for too long the strobe effect may induce seizures.”

The discovery of an optically mesmerizing forest landscape, one with potential neurological effects on its visitors, and one that was very clearly planted according to an artificial geometric plan, will perhaps not instantly seem like a tree farm several hundred years from now; until its actual quotidian purpose is deduced, the duplicative-forest-as-sacred-grove would be a wonderfully odd thing to ponder.

Jaguar Wood
In England, the car company Jaguar has planted a forest of walnut trees, partially to offset its harvesting needs for the fine wood used in its cars’ interiors. As Jaguar themselves describe the specialty landscape:

The Jaguar Walnut Wood is located at Lount in the heart of Leicestershire, less than 50km from Jaguar’s UK HQ. It was first planted on former farmland in 2001, but there are now more than 13,000 walnut trees and 70,000 other trees in a scenic 80-hectare woodland. Within it is a 27-hectare experimental zone researching the growth of different varieties of walnut tree for use as a hardwood timber and as a source of nuts.

The mathematical logic of an “offset” landscape—something planted or maintained in one location in order to make up for the loss or insufficient quantity of something elsewhere, forming an economic chain of surrogacy and doubling—is already quite fascinating, but a forest specially cultivated by an automotive firm adds an interesting touch.

While wood from these groves does not actually make it into Jaguar cars, the “experimental zone” inside the forest might seem rather regal—or perhaps simply surreal—to anyone stumbling upon records of it in a thousand years’ time.

And who knows: perhaps we might even someday discover that a small grove of walnut trees growing on a hill in upstate New York, on a distant tributary of the Hudson, was actually planted for no other reason than to panel the interior walls of a specific skyscraper in 1950s Manhattan, a grove now derelict and teeming with weeds, its original purpose gone, the rooms it was once meant to panel now themselves long dismantled; or an entire forest somewhere north of Athens, Greece, originally planted to serve as wood stock for a Mediterranean fleet, its trunks and branches grown only for hulling warships, now lies abandoned, bearing no historical trace of that earlier purpose.

How do we account for these missing histories of specialty groves in our sense of landscape mythology?

Her Majesty’s Shipbuilding Forest
The New Forest in England was, in fact, once extensively used and harvested for the purpose of Royal shipbuilding. From the period 1685 to 1875, “timber requirements of the Navy dominate[d] the Forest,” we read in a short history of the landscape. There are even now remnant groves left over from those ship-planting days:

Admiral Nelson, ever mindful of the needs of shipbuilding, visited in 1802 and declared the “finest timber in the kingdom” had sunk to a deplorable state! So, 30 million acorns were planted across 11,000 acres. But before the oaks were half grown, they were redundant, replaced by iron and steel in the shipbuilders’ yards. Thanks to Nelson, however, the forest now contains the country’s largest area of mature oak.

In other words, scattered across an area of nearly 11,000 acres are trees that never became ships—escaping that fate in which whole forests would go to war at sea, their wood sailing into battle in the form of imperial fleets.

We might ask, then: Could a sacred grove be something in which future ships are deliberately cultivated? For me, the most interesting aspect of that question would be the idea that, hovering negatively like a ghost around a forest’s growing branches, are the devices, ships, buildings, and machines that those forests are meant to become—like wooden Transformers, whole groves will unlock their roots from shattered bedrock, clip together in filigrees of undergrowth, and assemble into some vast and fearsome battleship, which then floats out with a monstrous roar into the wine-dark sea.

Growing a Hidden Architecture

[Image: From Growing A Hidden Architecture by Christian Kerrigan].

As it happens, this very idea was the premise of a fascinating graduate student project at the Bartlett School of Architecture in London several years ago.

[Image: From Growing A Hidden Architecture by Christian Kerrigan].

For Growing A Hidden Architecture, Christian Kerrigan proposed an awe-inspiring series of contraptions—collars, tourniquets, hinges, corsets, and belts—that could be attached to still-growing trees, bending and shaping their growth into a functioning, sea-ready ship.

[Images: From Growing A Hidden Architecture by Christian Kerrigan].

“By controlling the manipulation of refined armatures, calibrating devices and designed corsets,” Kerrigan writes, “the system is capable of controlling the growth of a ship inside the forest. The ship will grow over a period of 200 years and will exist as a hidden architecture inside the trees. The ship growing in the forest is the ship from the ‘Rime of the Ancient Mariner,’ a tale of man’s relationship to mortality.”

[Image: From Growing A Hidden Architecture by Christian Kerrigan].

In a particularly awesome detail, “the artificial system harvests resin from the trees to measure time passing”:

Slowly growing to completion, the end of the system within the forest is signalled by the Amber Clock, the resin cycles in the trees keeping time. The armatures alter the geometries of the copse with technologies, which are spliced into the hull of the ship.

Kerrigan’s vision of a ship self-assembling through carefully restricted tree growth—and the architectural implications of such a technique—is both astonishing and powerful.

[Image: From Growing A Hidden Architecture by Christian Kerrigan].

The entirety of his project is worth exploring in full.

The Grove as Growth Assembly

[Image: From Growth Assembly by Sascha Pohflepp, Alexandra Daisy Ginsberg and Sion Ap Tomos].

Rounding out this short list of possible “sacred groves” is a project by Sascha Pohflepp, Alexandra Daisy Ginsberg and illustrator Sion Ap Tomos that explored a similar idea to Kerrigan’s.

[Image: From Growth Assembly by Sascha Pohflepp, Alexandra Daisy Ginsberg and Sion Ap Tomos].

Called Growth Assembly, their project included the added splash of gene-splicing: the trio proposed a grove of genetically modified trees that could sprout machine-parts instead of fruit.

Pohflepp writes: “Coded into the DNA of a plant, product parts grow within the supporting system of the plant’s structure. When fully developed, they are stripped like a walnut from its shell or corn from its husk, ready for assembly.”

[Image: From Growth Assembly by Sascha Pohflepp, Alexandra Daisy Ginsberg and Sion Ap Tomos].

This genetic revolution in plant-based manufacturing—wherein the gears used in your car’s engine might actually be the hard fruit of modified trees—would have a corresponding effect on the world’s economic landscape:

Shops have evolved into factory farms as licensed products are grown where sold. Large items take time to grow and are more expensive while small ones are more affordable. The postal service delivers lightweight seed-packets for domestic manufacturers.

Like some Industrial Age “Jack and the Beanstalk,” you simply plant a few seeds and watch as vast, living factories soon grow.

[Image: From Growth Assembly by Sascha Pohflepp, Alexandra Daisy Ginsberg and Sion Ap Tomos].

So, with these projects in mind, and having read Bowe’s essay, what other unexpected forest landscapes might we suggest as viable candidates for inclusion in a broadened definition of the sacred grove—a new kind of sacred sci-fi, with mutated trees and fruitful juxtapositions? What is the design future of the sacred grove?

Geofencing and Investigatory Datasheds

There’s a lot to write about “geofencing” as a law enforcement practice, but, for now, I’ll just link to this piece in the New York Times about the use of device-tracking in criminal investigations.

There, we read about something called Sensorvault: “Sensorvault, according to Google employees, includes detailed location records involving at least hundreds of millions of devices worldwide and dating back nearly a decade.”

To access Sensorvault, members of law enforcement can use a “geofence warrant.” This is a hybrid digital/geographic search warrant that will “specify an area and a time period” for which “Google gathers information from Sensorvault about the devices that were there. It labels them with anonymous ID numbers, and detectives look at locations and movement patterns to see if any appear relevant to the crime. Once they narrow the field to a few devices they think belong to suspects or witnesses, Google reveals the users’ names and other information.”

In other words, you can isolate a specific private yard, public park, city street, or even several residential blocks during a particular period of time, then—with the right warrant—every device found within or crossing through that window can be revealed.

To a certain extent, the notion of a “crime scene” has thus been digitally expanded, taking on a kind of data shadow, as someone simply driving down a street or sitting in a park one day with their phone out is now within the official dataprint of an investigation. Or perhaps datashed—as in watershed—is a better metaphor.

But this, of course, is where things get strange, from both a political and a narrative point of view. Political, because why not just issue a permanent, standing geofence warrant for certain parts of the city in order to track entire targeted populations, whether they’re a demographic group or members of a political opposition? And narrative, because how does this change what it means to witness something, to overhear something, to be privy to something, to be an accomplice or unwilling participant? And is it you or your device that will be able to recount what really occurred?

From a narrative point of view, in other words, anyone whose phone was within the datashed of an event becomes a witness or participant, a character, someone who an author—let alone an authority—now needs to track.

(For more thoughts on witnessing, narrative, and authors/authorities, I wrote a piece for The Atlantic last year that might be of interest.)

Fieldworks

[Image: Via Space Saloon].

For the second year in a row, Space Saloon’s Fieldworks program will take place out in the Morongo Valley, in the California desert near both the San Andreas Fault and Joshua Tree National Park.

Fieldworks bills itself as an “experimental design-build festival,” hosted by a “traveling group that investigates perceptions of place.” The program includes guest lectures, hands-on workshops in digital site-documentation, charrettes, and an eventual build-out of a few pavilion-like proposals.

[Image: Via Space Saloon].

You can read more at the Fieldworks website, including this useful FAQ, but it looks like a great opportunity to get your hands dirty in an extraordinary landscape only two hours or so outside Los Angeles.

Click through for the registration page.

After the Clouds

[Image: A cloudless day in the Alabama Hills of California; photo by BLDGBLOG].

The Earth could lose all its clouds according to a feasible runaway greenhouse scenario, modeled by scientists at Caltech.

“Clouds currently cover about two-thirds of the planet at any moment,” Natalie Wolchover writes for Quanta. “But computer simulations of clouds have begun to suggest that as the Earth warms, clouds become scarcer. With fewer white surfaces reflecting sunlight back to space, the Earth gets even warmer, leading to more cloud loss. This feedback loop causes warming to spiral out of control.”

Or, she warns, as if channeling J. G. Ballard’s novel The Drowned World, “think of crocodiles swimming in the Arctic.”

Technology, Prehistory, Humanity

[Image: Still from 2001].

For those of you in the Bay Area, the Berkeley Center for New Media is hosting an event on April 3rd that sounds worth checking out. “The Human Computer in the Stone Age: Technology, Prehistory, and the Redefinition of the Human after World War II” is a talk by historian Stefanos Geroulanos. From the event description:

After World War II, new concepts and metaphors of technology helped transform the understanding of human history all the way back to the australopithecines. Using concepts from cybernetics and information theory as much as from ethnology and osteology, scientists and philosophers reorganized the fossil record using a truly global array of fossils, and in the process fundamentally re-conceptualized deep time, nature, and the assemblage that is humanity itself. This paper examines three ways in which technological prehistory, that most distant, speculative, and often just weird field, came to reorganize the ways European and American thinkers and a lay public thought about themselves, their origins, and their future.

This obviously brings to mind the early work of Bernard Stiegler, whose Technics and Time, 1 remains both difficult and worth the read.

In any case, if you happen to attend, let me know how it goes.

(In the unlikely event that you share my taste in electronic music, you might choose to prepare for this lecture by listening to Legowelt’s otherwise unrelated track, “Neolithic Computer.”)

Architecture of the In-Between

“The city owns some of the narrowest, most unusual lots in New York,” we read, but these odd lots might soon host affordable housing. A new competition called Big Ideas for Small Lots NYC is looking for architectural proposals for how these awkwardly sized spaces might be used.

Although these overlooked lots exist all over New York—“The city became the owner of thousands of properties beginning in the 1960s and ’70s,” The New York Times explains, “many in the Bronx and Brooklyn, where properties were seized from delinquent landlords and urban blight was rampant”—the competition is focused on one particular location:

Entrants will be asked to focus on a property on West 136th Street in Harlem, a 17-foot-wide, 1,665-square-foot mid-block lot that is overgrown with weeds and home to a number of feral cats. It was chosen because many of its challenges, including narrow frontage and limited sunlight, are present at other lots on the list, according to a spokesman for the project.

Read more at the project website or at The New York Times.

(Very, very vaguely related: Buy a Los Angeles Sidewalk Corner).

War Simulant

[Image: From Battle: Los Angeles (2011)].

In an era when military action is increasingly shifting toward cities, it’s interesting to note that the U.S. Army is conducting drills in the skies above Los Angeles this week.

As NBC Los Angeles reports, the exercises are for “the purpose of enhancing soldier skills by operating in various urban environments and settings… Residents around the L.A. area may hear sounds associated with training, including aircraft and weapon simulations.”

Recall—as cited by Mike Davis in his book City of Quartz—that this is not the first time L.A. has been used as an urban-warfare simulator. “Scores of residents in the Bunker Hill and Civic Center areas complained of the racket Thursday night after several of the Army helicopters began maneuvering close to high-rise apartments and condominiums at about 10 p.m.,” the L.A. Times reported way back in 1989. At the time, these close-building maneuvers were meant to test “urban approach and departure techniques.”

(Thanks to Nicola Twilley for the tip!)

Inside Job

[Image: Via Wikipedia].

Although it’s by no means new, I realized I’ve never posted about Gregor Schneider’s project Dead House ur here. For that, Schneider spent roughly a decade systematically dismantling and rebuilding the interior of his own childhood home.

Writing for Artforum back in 2000, Daniel Birnbaum suggested that the project “is more labyrinth than house, and the prospect of getting stuck in a particularly narrow passage is truly frightening.” Indeed, there are some rooms and corridors remade in miniature, such that it’s only possible to crawl through them.

For that article, Birnbaum toured the house with Schneider himself. After having a cup of coffee, Birnbaum writes, “We leave the room not through the door but through a secret aperture that is revealed by pushing back part of the wall behind me. On the other side, we get a surprising view of the room we’ve just left: It is a motor-driven contraption set on wheels and may very well have been circulating slowly, like a high-rise cocktail lounge, while we were having coffee.” It’s a house, it’s a mechanism, it’s a maze.

So why couldn’t Birnbaum tell if the room they were sitting in had been rotating? Because the windows weren’t really windows—“Behind the window is a second window,” he writes—and many of the rooms offer no view of anything outside their own walls. Indeed, Birnbaum adds, “There seems to be no outside. Everything leads back into the house.”

Briefly, I’m reminded of the fake ophthalmologist’s office constructed in Eugene, Oregon, of all places, back in 1965, where it was used to test how people reacted to subtle room movements—without first explaining to them that the room was an experiment. Bizarrely, the room’s movements were meant to simulate what it would be like to stand at the top of a future skyscraper on the other side of the country in Manhattan: the World Trade Center towers.

In any case, everything might lead “back into the house,” as Birnbaum writes, but the interior of Schneider’s house had been made unrecognizable. Schneider hid walls behind walls, ceilings beneath other ceilings, until “the original dimensions and configuration of the various rooms are all but impossible to reconstruct.”

In an article I’ve been saving inside of a binder for some reason, and whose original place of publication is no longer clear, curator Yilmaz Dziewior continues this discussion of the architectural interventions Schneider has made. Schneider, Dziewior writes, “places walls in front of existing ones. The new walls are almost impossible to distinguish from the old. Sometimes he insulates the spaces between these walls with noise-reducing materials such as lead or foam. These structural alterations result in almost imperceptible changes in the acoustics.”

You could say that the work falls somewhere between, say, Gordon Matta Clark and the Saw franchise.

[Image: Via with reference to death].

Turning one’s own childhood home into a maze that is periodically dismantled, its rooms and parts sent around the world to various art galleries and museums, is, I suppose, as good a way as any to make it clear you want to complicate your relationship to the past.

Great Basin Autoglyphs

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

A new exhibition of work by photographer Michael Light opened last night at the Hosfelt Gallery in San Francisco.

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

Called “Great Basin Autoglyphs and Pleistoseas,” the work is part of an “ongoing aerial photographic survey of the arid American West… moving from habited, placed settlements into pure space and its attendant emptiness.”

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

Along the way, Light reframes human civilization as a series of abstract lines inscribed at vast scale through remote areas, less like infrastructure and more like planetary graffiti.

“Twelve thousand years ago,” Light writes, “the Great Basin—that part of the country between California and Utah where water does not drain to the ocean—was 900 feet underwater, covered by two vast and now largely evaporated historical lakes, Bonneville and Lahontan. The remnants of Lake Bonneville today are the Great Salt Lake in Utah and its eponymous salt flats, while the most famous portion of the former Lake Lahontan is the Black Rock Desert in Nevada, an alkali bed that floods and dries each year, creating the flattest land on earth.”

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

Light is an incredibly interesting photographer, and has done everything from wreck-diving old military ships scuttled during nuclear weapons tests in the South Pacific to releasing a book of retouched archival photos from the Apollo Program.

Nicola Twilley and I interviewed Light several years ago for our Venue project, where we discussed these projects at length.

[Image: Michael Light, from “Great Basin Autoglyphs and Pleistoseas”].

In you’re near San Francisco, stop by the Hosfelt Gallery before March 16, 2019, and also consider ordering a copy of Light’s forthcoming book, Lake Lahontan/Lake Bonneville, with related images.