Have Clock, Will Travel

[Image: From The Hunt For Red October, via Quora].

There’s a line in The Hunt For Red October where a submarine navigator jokes, “Give me a stopwatch and a map, and I’ll fly the Alps in a plane with no windows.” I was reminded of that comment by reports of a new atomic clock that will allegedly enable “futuristic navigation schemes”:

“Every single spacecraft exploring deep space today relies on navigation that’s performed back here at Earth,” said [Jill] Seubert, who’s based at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Earth-based antennas send signals to spacecraft, which the spacecraft echo back. By measuring a signal’s round-trip time within a billionth of a second, ground-based atomic clocks in the Deep Space Network help pinpoint the spacecraft’s location.

With the new Deep Space Atomic Clock, “we can transition to what we call one-way tracking,” Seubert said. A spaceship would use such a clock onboard to measure the time it takes for a tracking signal to arrive from Earth, without having to send that signal back for measurement with ground-based atomic clocks. That would allow a spacecraft to judge its own trajectory.

One might say that the ship is navigating time as much as it is traveling through space—steering through the time between things rather than simply following the lines that connect one celestial object to another.

The general problem of ship orientation and navigation in deep space is a fascinating one, and it has led to ideas like using “dead stars” as fixed directional beacons, a kind of thanato-stellar GPS. This is “the long-sought technology known as pulsar navigation,” Nature reported last year. “For decades, aerospace engineers have dreamed of using these consistently repeating signals for navigation, just as they use the regular ticking of atomic clocks on satellites for GPS.” You head toward something that’s only consistent because it’s dead.

There is something really interesting here, where human navigators and their far-flung machines are confronted with a landscape so vast it is all but devoid of local landmarks. Imagine the cognitive skills necessary for early humans to wander forth, on foot, across colossal and empty steppes, long before modern navigational tools, or picture autonomous, near-frozen hard-drives falling endlessly outward toward stars they might never reach: these scenarios lend themselves to metaphor just as much as they present real-world cartographic problems masked as an encounter with landscapes impossibly huge.

A landscape so big it becomes time, and only a clock can conquer it; or a space so empty, its only fixed points are long dead.

Terrestrial Concussion / Infinite Half-Life

[Image: Courtesy Xenon Collaboration, via ScienceNews].

Earthquakes, popularly seen as discrete, large-scale events that occur only once every few years—once a decade, once a century, once every thousand years—turn out to be nearly continuous. There are always earthquakes.

According to ScienceNews, “millions of tiny, undetected earthquakes rumble through the ground” every day in California. These are “quakes of such small magnitude that their signals were previously too small to be separated from noise.”

In other words, while we wait for the Big One—a true seismic event with the power to punctuate and interrupt everyday life—there are millions of smaller earthquakes constantly rattling the floors, walls, and roads we consider stable.

I’m reminded of a recent article in the New York Times about football player Ryan Miller. “Miller has had 10 concussions in all,” we read, “and that is to understate his battering. The brain sits in fluid inside the armor of a skull, and even nonconcussive whacks can result in brain colliding with bone. A couple of hard hits can come to resemble a concussion. The average football player, according to Cantu, takes 600 to 800 hits in high school and 800 to 1,000 in college.”

Concussions are like earthquakes, in other words: we wait for the Big One, but this means that, by definition, we miss the cumulative effects of all the little shocks along the way. Everything is moving; the earth is not stable; the landscape is jolting and cracking at a concussive rate, every day, beneath our feet.

On the opposite side of this temporal spectrum, the same website, ScienceNews, also reported that some radioactive decay takes so long, they can outlast our current universe.

“It takes 1 trillion times the age of the universe for a xenon-124 sample to shrink by half,” we read. “The decay, seen in xenon-124 atoms, happens so sparingly that it would take 18 sextillion years (18 followed by 21 zeros) for a sample of xenon-124 to shrink by half, making the decay extremely difficult to detect.”

That’s a bit of an understatement: it means you would need a machine significantly older than the universe to detect and measure these moments of decay.

[Image: Xenon, via Images of Elements].

The breakdown of this specific example—the element xenon-124—involves something called “two-neutrino double electron capture,” and I won’t even pretend to understand what it means. Nevertheless, what interests me here is the implied possibility that, well, on a universal timescale, everything is decaying. Everything is breaking down. But it occurs on a scale so huge it is inaccessible to human experience, certainly, but perhaps even to human cognition.

Imagine an element that decays only once every 750 trillion years. (Our current universe is 14 billion years old.) Imagine a creature living 749.999 trillion years, arrogantly thinking that its world is immortal.

In any case, this feels like the exact inverse of the previous example: while we’re on the hunt for radioactive decay, or while we’re out there looking for millions of overlooked mini-quakes and micro-concussions, we might actually miss detecting these massive punctuations of time, epic cycles so rare and daunting that our own universe cannot accommodate them.

For those attentive enough, in other words, there are concussions and earthquakes constantly; yet, on a large-enough timescale, everything decays, everything breaks down, everything has a half-life. Everything is radioactive. In the midst of all that, we make breakfast and take the subway to work.

Walker Lane

[Image: The shadow of the San Andreas Fault emerges near sunset at Wallace Creek; photo by BLDGBLOG].

All four long-term readers of BLDGBLOG will know that I am obsessed with the San Andreas Fault, teaching an entire class about it at Columbia and visiting it whenever possible as a hiking destination.

The San Andreas is often a naturally stunning landscape—particularly in places like Wallace Creek, Tomales Bay, or even the area near Devil’s Punchbowl—but the fault’s symbolism, as the grinding edge of two vast tectonic plates, where worlds slide past one another toward an unimaginable planetary future, adds a somewhat mystical element to each visit. It’s like hiking along a gap through which a new version of the world will emerge.

I was thus instantly fascinated several years ago when I read about something called the Walker Lane, a huge region of land stretching roughly the entire length of the Eastern Sierra, out near the California/Nevada border, which some geologists now believe is the actual future edge of the North American continent—not the San Andreas. It is an “incipient” continental margin, in the language of structural geology.

[Image: My own sketch of the Walker Lane, based on Google Maps imagery].

In fact, the Walker Lane idea suggests, the San Andreas is so dramatically torqued out of alignment at a place northwest of Los Angeles known as the “Big Bend” that the San Andreas might be doomed to go dormant over the course of several million years.

That’s good news for San Franciscans of the far future, but it means that a world-shattering amount of seismic strain will need to go somewhere, and that somewhere is a straight shot up the Eastern Sierra along the Walker Lane: a future mega-fault, like today’s San Andreas, that would stretch from the Gulf of California, up through the Mojave Desert, past Reno, and eventually back out again to the waters of the Pacific Ocean (most likely via southwest Oregon).

Much of this route, coincidentally, is followed closely by Route 395, which brings travelers past extinct volcanoes, over an active caldera, within a short drive of spectacular hot springs, and near the sites of several large earthquakes that have struck the region over the past 150 years.

That region—again, not the San Andreas—is where the true tectonic action is taking place, if the Walker Lane hypothesis is to be believed.

[Image: The gorgeous Hot Creek Geologic Site, along the Walker Lane; photo by BLDGBLOG].

In an absolute dream come true, I was able to turn this armchair obsession of mine into a new feature for Wired, and it went online this morning as part of their May 2019 issue.

For it, I spend some time out in the field with Nevada State Geologist James Faulds, a major proponent of the Walker Lane hypothesis. We visited a fault trench, we hiked along a growing rift southeast of Pyramid Lake, and we met several of his colleagues from the University of Nevada, Reno, including geodesist Bill Hammond and paleoseismologist Rich Koehler.

I also spoke with early advocates of the Walker Lane hypothesis, particularly Amos Nur and Tanya Atwater, both of whom have been suggesting, since at least the early 1990s, that something major might be in store for this under-studied region.

[Image: Coso Volcanic Field, near where the Eastern California Shear Zone meets the Walker Lane; photo by BLDGBLOG].

The Wired story is almost entirely focused on the science behind discovering the Walker Lane, from GPS geodesy to LiDAR, but there are also a few scattered thoughts on deep time and the vast imaginative horizon within which geologists operate. This comes mostly by way of Marcia Bjornerud’s new book Timefulness. There is also a brief look at indigenous seismic experience as allegedly recorded in Native American petroglyphs along the Walker Lane, via an interesting paper by Susan Hough.

But, on a more symbolic level, the Walker Lane totally captivates me, including how vertiginous and exciting it is to think about—let alone to hike along!—a new edge to the known world, a linear abyss emerging in the desert outside Los Angeles, slowly rifting north through hundreds of miles of dead volcanoes and disorganized fault lines, gradually pulling all of it together into one clear super-system, flooding with the waters of the Gulf of California, bringing a new version of the Earth’s surface into being in real-time.

In any case, check out the piece over at Wired if any of this sounds up your alley. The piece includes some great photos by Tabitha Soren.

On Plastic in Time

Two recent articles worth reading in each other’s context explore the unexpected long-term morphological behavior of plastic.

[Image: Photo by Benjamin Chelly, courtesy Albin-Michel/Galerie47, via The New York Times].

In one, Popular Science looks at the curatorial difficulties posed by plastic objects. Today, we read, “chemists and curators are in near-constant collaboration, working to preserve the world’s modern and contemporary art collections with methods derived from the field of heritage science. The thing is, no one’s actually certain what the best course of action is.”

For example, “museums are still stumped by plastics. Little is known, [University College London chemist Katherine Curran] says, about how plastics degrade, let alone how to stop it. But perhaps most surprising is the fact that most museums don’t even know the type of plastics in their collection. ‘Things often get classified as “plastic,”’ Curran says, ‘and that’s not that helpful.’”

The entire article is worth reading, especially for architects committed to using novel materials in their work without a clear sense of how those materials will behave over time (in particular, when novel materials are used as exterior cladding).

The other article to throw into the mix here describes the behavior of plastic furniture over multiple years and decades as a kind of open-air materials science experiment, unfolding in real time.

“One famous designer chair is oozing goop. Another has exploded into puffs of foam. A bookcase’s shelves bubbled as gases formed within,” The New York Times writes. “The culprits? Plastic. And time.

Like the article linked above, this one looks at plastic’s surprising mutability, given the material’s otherwise notorious, planet-threatening ability to outlast human civilization. It specifically discusses the work of designer Gaetano Pesce, including a cabinet of his that “bulged and warped as gases formed in its depths.” Pesce’s giddy response to his worried client? “The cabinet is alive and beautiful,” he allegedly said. “I so wish I was there to see my work evolving.”

That article also introduces the great phrase “furniture components with questionable futures,” writing that these sorts of “experimental objects are falling into mysterious decay” and that this fate is already visible with 3D-printed artworks, for example, made using materials whose long-term performance is completely unknown.

What’s so compelling about both of these articles for me is the basic idea that something perceived as nightmarishly eternal is, in fact, subject to deeply flawed mundane transformation, and that artificial objects supposedly facing near-geological lifespans actually perform, behave, and decay in semi-biological ways. What’s more, museum curators are ironically being tasked with stopping the decay of a material that, in almost other ecological context, cannot degrade fast enough.

This is not to suggest that we can therefore be cavalier in our use of plastic, but simply that the world of immortal things will not last forever after all.

An Abundance of Glass

Going through some old notes, I found this great line from architect Kengo Kuma’s 2008 book Anti-Object, describing the conceptual ambition—and ultimate anticlimax—of modernist architecture. “Modernism set out to connect time and space,” he wrote, “but ultimately managed only to create objects that used an abundance of glass.”

The London Time Ball

timeball[Image: The London “time ball” at Greenwich, courtesy Royal Museums Greenwich].

Thanks to the effects of jet lag getting worse as I get older, I was basically awake for five days in London last week—but, on the bright side, it meant I got to read a ton of books.

Amongst them was an interesting new look at the history of weather science and atmospheric forecasting—sky futures!—by Peter Moore called The Weather Experiment. There were at least two things in it worth commenting on, one of which I’ll save for the next post.

This will doubtless already be common knowledge for many people, of course, but I was thrilled to learn about something called the London “time ball.” Installed at the Greenwich Royal Observatory in 1833 by John Pond, England’s Royal Astronomer, the time ball was a kind of secular church bell, an acoustic spacetime signal for ships.

It was “a large metal ball,” Moore writes, “attached to a pole at the Royal Observatory. At 1 p.m. each day it dropped to earth with an echoing thud so that ships in the Thames could calibrate their chronometers.” As such, it soon “became a familiar part of the Greenwich soundscape,” an Enlightenment variation on the Bow Bells. Born within sound of the time signal…

timeball1[Image: Historic shot of the time ball, via the South London Branch of the British Horological Institute].

There are many things I love about this, but one is the sheer fact that time was synchronized by something as unapologetically blunt as a sound reverberating over the waters. It would have passed through all manner of atmospheric conditions—through fog and smoke, through rain and wind—as well as through a labyrinth of physical obstructions, amidst overlapping ships and buildings, as if shattering the present moment into an echo chamber.

Calculating against these distortions would have presented a fascinating sort of acoustic relativity, as captains and their crew members would have needed to determine exactly how much time had been lost between the percussive thudding of the signal and their inevitably delayed hearing of it.

In fact, this suggests an interesting future design project: time-signal reflection landscapes for the Thames, or time-reflection surfaces and other acoustic follies for maritime London, helping mitigate against adverse atmospheric effects on antique devices of synchronization.

In any case, the other thing I love here is the abstract idea that, at this zero point for geography—that is, the prime meridian of the modern world—a perfect Platonic solid would knock out a moment of synchrony, and that Moore’s “echoing thud” at this precise dividing line between East and West would thus be encoded into the navigational plans of captains sailing out around the curvature of the earth, their expeditions grounded in time by this mark of sonic punctuation.

Comparative Astral Isochrones

[Image: Isochronic map of travel distances from London, from An Atlas of Economic Geography (1914) by John G. Bartholomew (via)].

“This is an isochronic map—isochrones being lines joining points accessible in the same amount of time—and it tells a story about how travel was changing,” Simon Willis explains over at Intelligent Life. The map shows you how long it would take to get somewhere, embarking from London:

You can get anywhere in the dark-pink section in the middle within five days–to the Azores in the west and the Russian city of Perm in the east. No surprises there: you’re just not going very far. Beyond that, things get a little more interesting. Within five to ten days, you can get as far as Winnipeg or the Blue Pearl of Siberia, Lake Baikal. It takes as much as 20 days to get to Tashkent, which is closer than either, or Honolulu, which is much farther away. In some places, a colour sweeps across a landmass, as pink sweeps across the eastern United States or orange across India. In others, you reach a barrier of blue not far inland, as in Africa and South America. What explains the difference? Railways.

Earlier this year, when a private spacecraft made it from the surface of the Earth to the International Space Station in less than six hours, the New York Times pointed out that “it is now quicker to go from Earth to the space station than it is to fly from New York to London.”

[Image: From Twitter].

In the context of Bartholomew’s map, it would be interesting to re-explore isochronal cartography in our own time, to visualize the strange spacetime we live within today, where the moon is closer than parts of Antarctica and the International Space Station is a shorter trip than flying to Heathrow.

(Map originally spotted via Francesco Sebregondi).

2 architectural suggestions for stopping time

While not ‘architectural,’ really – though I’m reminded of Norman Foster’s assertion that the 747 airplane is the single most important architectural design of the 20th century (giving a whole new perspective to September 11th: it was an architectural competition, and the skyscraper lost) – two architectural suggestions for stopping time are as follows:
1) Build a solar-powered airplane and fly it at exactly the speed of the rotation of the earth, against the earth’s rotation. Do this at high-noon, over the equator. The plane will always be in the glow of the sun, never leaving its precise and comfortable position at high-noon. Having become a geostationary structure in a low-atmosphere orbit, the airplane, barring mechanical failure, will never advance forward in time. It will always be noon, technically on the same day. It will be architecture that’s seceded from the aging of the universe.
2) Build a box of perfectly reflective internal surfaces. Light will never be absorbed or dissipated, but endlessly recycled and returned through the box’s mirrored interior. Whatever moment it captures – that is, whatever was happening when the box was sealed: the event, or location, that bounced its reflective way into the box’s hermetic closure – will remain in a constant state of cross-reflection, never dissipating or fading. The image, a kind of 3-dimensional holograph of the event it refers to, can then be sent floating outward from the earth, drifting through space, reflecting, never aging, one moment stuttering through itself over and over again till universal heat-death does us in.
And in both cases – within those two spatial instances, those two pieces of ‘architecture’ – time will effectively be stopped.
(Or so he tells himself.)