Exotempestology

Purely in terms of extreme landscapes, this planet is certainly one of the most notable: eight times the mass of Jupiter, but starless, adrift, an “orphaned world” without a sun, “somehow shot out of its orbit” into the darkness of space, its skies thundering with storms of molten metal.

(Story is from 2015, but randomly rediscovered this morning in my bookmarks.)

Strange Precipitation

It’s not only snow falling from the sky this winter, but microplastics, a holiday season marked by petrochemical drifts accumulating on our windowsills and roadsides.

European researchers have found much more than just plastics, in fact, snowing down on our shoulders: “Acrylates/polyurethanes/varnish/lacquer (hereafter varnish) occurred most frequently (17 samples), followed by nitrile rubber (16 samples), polyethylene (PE), polyamide, and rubber type 3 (13; ethylene-propylenediene rubber).”

That’s plastic, rubber, varnish, lacquer, and polyethylene—a true precipitation of the Anthropocene—snowing from the sky, as if we’ve embalmed the weather. Zombie snow.

Meanwhile, it seems as if snow itself is being redefined by these studies. For example, every winter, terrestrial landscapes are buried not just by crystals of frozen water, but by the remains of dead stars.

In what would read like a poem in any other context, ScienceNews reports that “exploding stars scattered traces of iron over Antarctic snow.” In other words, metallic fragments of dead stars can be found sprayed across ice at the bottom of our world.

This has cosmic implications:

The result could help scientists better understand humankind’s place in space. The solar system resides within a low-density pocket of gas, known as the local bubble. It’s thought that exploding supernovas created shock waves that blasted out that bubble. But the solar system currently sits inside a denser region within that bubble, known as the Local Interstellar Cloud. The detection of recently deposited iron-60 suggests that this cloud may also have been sculpted by supernovas, the researchers say.

Sculpted by supernovas. We exist within that space, once carved by the detonations of stars whose metallic remains snow down onto dead continents, forming drifts—someday, entire glaciers—of plastic, rubber, polyethylene, and more.

(Image: Snow, via the Adirondack Almanac. Related: Space Grain.)

Folktales for the Offworld

The vocabulary in this new book on Extraterrestrial Construction Techniques is amazing, from the design of “Earth-independent habitats” to the use of “space-native metals” and other “non-terrestrial construction materials in the alien environment of space.”

The full manuscript also contains a section on “high-fidelity simulants”—another great phrase—as well as one on artificial crystal-growth techniques in space. Here, the ideas themselves are architecturally evocative: “It is envisioned that fragments of bio-like materials could be launched in an inactive state during space flight, and once landed at the Moon or Mars, would start to grow into construction materials or even pre-engineered habitats.” Controlled crystal architecture!

You can easily imagine some new version of Jack and the Beanstalk, about a relentlessly growing crystal building, a future folktale for life in space.

Have Clock, Will Travel

[Image: From The Hunt For Red October, via Quora].

There’s a line in The Hunt For Red October where a submarine navigator jokes, “Give me a stopwatch and a map, and I’ll fly the Alps in a plane with no windows.” I was reminded of that comment by reports of a new atomic clock that will allegedly enable “futuristic navigation schemes”:

“Every single spacecraft exploring deep space today relies on navigation that’s performed back here at Earth,” said [Jill] Seubert, who’s based at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Earth-based antennas send signals to spacecraft, which the spacecraft echo back. By measuring a signal’s round-trip time within a billionth of a second, ground-based atomic clocks in the Deep Space Network help pinpoint the spacecraft’s location.

With the new Deep Space Atomic Clock, “we can transition to what we call one-way tracking,” Seubert said. A spaceship would use such a clock onboard to measure the time it takes for a tracking signal to arrive from Earth, without having to send that signal back for measurement with ground-based atomic clocks. That would allow a spacecraft to judge its own trajectory.

One might say that the ship is navigating time as much as it is traveling through space—steering through the time between things rather than simply following the lines that connect one celestial object to another.

The general problem of ship orientation and navigation in deep space is a fascinating one, and it has led to ideas like using “dead stars” as fixed directional beacons, a kind of thanato-stellar GPS. This is “the long-sought technology known as pulsar navigation,” Nature reported last year. “For decades, aerospace engineers have dreamed of using these consistently repeating signals for navigation, just as they use the regular ticking of atomic clocks on satellites for GPS.” You head toward something that’s only consistent because it’s dead.

There is something really interesting here, where human navigators and their far-flung machines are confronted with a landscape so vast it is all but devoid of local landmarks. Imagine the cognitive skills necessary for early humans to wander forth, on foot, across colossal and empty steppes, long before modern navigational tools, or picture autonomous, near-frozen hard-drives falling endlessly outward toward stars they might never reach: these scenarios lend themselves to metaphor just as much as they present real-world cartographic problems masked as an encounter with landscapes impossibly huge.

A landscape so big it becomes time, and only a clock can conquer it; or a space so empty, its only fixed points are long dead.

Wandering Cliffs

[Image: ESA/Rosetta/MPS, via New Scientist].

Bringing to mind the landscape paintings of Peder Balke—or maybe Hokusai is more appropriate—entire cliffs seem to “wander” across the surface of Comet 67P.

“The hills may not be alive, but they are moving,” New Scientist reports. “The comet 67P/Churyumov-Gerasimenko has small cliffs that migrate across the landscape for months at a time,” apparently moving toward—not away from—the sun “at a rate of between 3 and 7 centimetres an hour.”

“The cliffs, or scarps, in question are only between 1 and 2 metres tall,” we read, “but on a comet the size of 67P, which is just 4 kilometres across at its longest point, they aren’t negligible—cliffs of a similar scale on Earth would be about 3 kilometres high.”

Frozen waves of geology, marching toward the sun in space.

Imagine a novel about a landscape photographer sent to record such sights, and the things she sees, the weird remoteness of it all, the camp sites and technical difficulties, where exposure time and depth-of-focus becomes an interplanetary concern, the ground pulsing continuously beneath her feet in a slow tide, a creeping sludge, that will never reach completion.

(Previously on BLDGBLOG: “We don’t have an algorithm for this”).

International House of Wobbling

[Image: The Gaithersburg Latitude Observatory, via the U.S. Library of Congress].

The Gaithersburg Latitude Observatory was designed in 1899 as part of a ring of similar facilities around the world, all constructed at the same latitude.

[Images: The Gaithersburg Latitude Observatory, via the U.S. Library of Congress].

Each building was installed at its specific location in order to collaborate in watching a particular star, and—as revealed by any inconsistencies of measurement—to find evidence of the Earth’s “wobble.” This was part of the so-called “International Latitude Service.”

[Image: The Gaithersburg Latitude Observatory, via the U.S. Library of Congress].

The building seen here basically operated like a machine, with a sliding-panel roof controlled by a rope and pulley, and a solid concrete foundation, isolated from the building itself, on which stood a high-power telescope.

[Image: The Gaithersburg Latitude Observatory, via the U.S. Library of Congress].

This pillar gives the building a vaguely gyroscopic feel, or perhaps something more like the spindle of a hard drive: a central axis that grounds the building and allows it to perform its celestial mission.

[Image: The Gaithersburg Latitude Observatory, via the U.S. Library of Congress].

What’s interesting, however, is that this absolutely heroic building program—a structure for measuring heavenly discrepancies and, thus, the wobble of the Earth—is hidden inside such an unremarkable, everyday appearance.

[Image: A photo of the Gaithersburg Latitude Observatory, via NOAA].

It’s a kind of normcore beach hut that wouldn’t be out of place on Cape Cod, with one eye fixed on the stars, a geodetic device revealing our planet’s wobbly imperfections, masquerading as vernacular architecture.

Speculative Mineralogy

[Image: An otherwise unrelated image of crystal twinning, via Geology IN].

It’s hard to resist a headline like this: writing for Nature, Shannon Hall takes us inside “the labs that forge distant planets here on Earth.”

This is the world of exogeology—the geology of other planets—“a research area that is bringing astronomers, planetary scientists and geologists together to explore what exoplanets might look like, geologically speaking. For many scientists, exogeology is a natural extension of the quest to identify worlds that could support life.”

To understand how other planets are made, exogeologists are synthesizing those planets in miniature in the earthbound equipment in their labs. Think of it as an extreme example of landscape modeling. “To gather information to feed these models,” Hall writes, “geologists are starting to subject synthetic rocks to high temperatures and pressures to replicate an exoplanet’s innards.”

Briefly, it’s easy to imagine an interesting jewelry line—or architectural materials firm—using fragments of exoplanets in their work, crystals grown as representations of other worlds embedded in your garden pavement. Or fuse the ashes of your loved ones with fragments of hypothetical exoplanets. “Infinite memorialization,” indeed.

In any case, recall that, back in 2015, geologist Robert Hazen “predict[ed] that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be duplicated anywhere in the cosmos.” As Hazen claimed, “Earth’s mineralogy is unique in the cosmos.” If we are, indeed, living in mineralogically unique circumstances, then this would put an end to the fantasy of finding a geologically “Earth-like” planet. But the search goes on.

This is not the only example of producing hypothetical mineral models of other worlds. In 2014, for example, ScienceDaily reported that “scientists for the first time have experimentally re-created the conditions that exist deep inside giant planets, such as Jupiter, Uranus and many of the planets recently discovered outside our solar system.” Incredibly, this included compressing diamond to a concentration denser than lead, using a giant laser.

Other worlds, produced here on Earth. Exoplanetary superdiamonds.

Read more over at Nature.

(Nature article spotted via Nathalia Holt).

Planetary Scale

[Image: “CHRONOS: The Space-Time Planetarium,” proposed by Drew Heller, Isabella Marcotulli, and Ibrahim Salman, via Eleven Magazine].

With news of “the largest planetarium in the Western Hemisphere and the fourth largest in the world” opening in New Jersey, I’m reminded of a design competition I meant to post about earlier this year.

A few months ago, Eleven Magazine hosted a quick competition to rethink the planetarium. It’s a great design brief: Eleven’s editors asked “if architecture itself could become—once again—a tool for experiencing and understanding space. How can architecture engage with and enhance today’s renewed age of space exploration and discovery? What does the next generation of planetariums look like?”

You can click around on the various entries here, but a few seemed worth mentioning.

[Image: “Microsphere” planetarium proposal by Christian Gabbiani and Elisa Porro, via Eleven Magazine].

The “Microsphere” proposal, for example, entails “a network of little planetariums scattered all over the world.” As the title suggests, each planetarium would be a small, single-occupancy sphere acting as a meditative space for viewing, studying, or thinking about the cosmos.

It’s an idea that only suffers from the unnecessary stipulation that these should be built directly next to existing, often very ancient sites of star observation, including Stonehenge. Not only does Stonehenge not need this sort of thing parked next to it, but installing these out in the suburbs, on city streets, on the roofs of low-income housing units, or even hidden in thickets in state parks would seem to be a much more interesting way for these structures to bring astronomy to the masses.

[Image: “Microsphere” planetarium proposal by Christian Gabbiani and Elisa Porro, via Eleven Magazine].

Another project is interesting for its attempt to reconceive what “space” really is and how a planetarium is meant to represent or engage with it.

[Image: “CHRONOS: The Space-Time Planetarium,” proposed by Drew Heller, Isabella Marcotulli, and Ibrahim Salman, via Eleven Magazine].

Acting as a “space-time planetarium,” a project called CHRONOS would allow visitors to “perceive astronomical scenes at different rates… through a labyrinth of six architectural techniques that invite the user to abandon earthly notions of space and time.”

The building thus requires a “space-time diagram.”

[Image: “Microsphere” planetarium proposal by Christian Gabbiani and Elisa Porro, via Eleven Magazine].

Whether or not the resulting building would actually resemble what the designers have proposed here, it sounds awesome. “The planetarium grounds users through abstract learning as they navigate the entanglement while warping their perception of space-time,” they write. “While traveling through a series of architectural space-time scenarios, users are enlightened with astronomical scenes that transcend human perception.”

[Image: “Microsphere” planetarium proposal by Christian Gabbiani and Elisa Porro, via Eleven Magazine].

As you’d expect, not every entry is particularly interesting and there are some real doozies in there, but it’s worth checking out. While you’re there, though, check out the other competitions—some still ongoing—that Eleven has hosted.

The Coming Amnesia

[Image: Galaxy M101; full image credits].

In a talk delivered in Amsterdam a few years ago, science fiction writer Alastair Reynolds outlined an unnerving future scenario for the universe, something he had also recently used as the premise of a short story (collected here).

As the universe expands over hundreds of billions of years, Reynolds explained, there will be a point, in the very far future, at which all galaxies will be so far apart that they will no longer be visible from one another.

Upon reaching that moment, it will no longer be possible to understand the universe’s history—or perhaps even that it had one—as all evidence of a broader cosmos outside of one’s own galaxy will have forever disappeared. Cosmology itself will be impossible.

In such a radically expanded future universe, Reynolds continued, some of the most basic insights offered by today’s astronomy will be unavailable. After all, he points out, “you can’t measure the redshift of galaxies if you can’t see galaxies. And if you can’t see galaxies, how do you even know that the universe is expanding? How would you ever determine that the universe had had an origin?”

There would be no reason to theorize that other galaxies had ever existed in the first place. The universe, in effect, will have disappeared over its own horizon, into a state of irreversible amnesia.

[Image: The Tarantula Nebula, photographed by the Hubble Space Telescope, via the New York Times].

It was an interesting talk that I had the pleasure to catch in person, and, for those interested, it includes Reynolds’s explanation of how he shaped this idea into a short story.

More to the point, however, Reynolds was originally inspired by an article published in Scientific American back in 2008 called “The End of Cosmology?” by Lawrence M. Krauss and Robert J. Scherrer.

That article’s sub-head suggests what’s at stake: “An accelerating universe,” we read, “wipes out traces of its own origins.”

[Image: A “Wolf–Rayet star… in the constellation of Carina (The Keel),” photographed by the Hubble Space Telescope].

As Krauss and Scherrer point out in their provocative essay, “We may be living in the only epoch in the history of the universe when scientists can achieve an accurate understanding of the true nature of the universe.”

“What will the scientists of the future see as they peer into the skies 100 billion years from now?” they ask. “Without telescopes, they will see pretty much what we see today: the stars of our galaxy… The big difference will occur when these future scientists build telescopes capable of detecting galaxies outside our own. They won’t see any! The nearby galaxies will have merged with the Milky Way to form one large galaxy, and essentially all the other galaxies will be long gone, having escaped beyond the event horizon.”

This won’t only mean fewer luminous objects to see in space; it will mean that, “as a result, Hubble’s crucial discovery of the expanding universe will become irreproducible.”

[Image: The “interacting galaxies” of Arp 273, photographed by the Hubble Space Telescope, via the New York Times].

The authors go on to explain that even the chemical composition of this future universe will no longer allow for its history to be deduced, including the Big Bang.

“Astronomers and physicists who develop an understanding of nuclear physics,” they write, “will correctly conclude that stars burn nuclear fuel. If they then conclude (incorrectly) that all the helium they observe was produced in earlier generations of stars, they will be able to place an upper limit on the age of the universe. These scientists will thus correctly infer that their galactic universe is not eternal but has a finite age. Yet the origin of the matter they observe will remain shrouded in mystery.”

In other words, essentially no observational tool available to future astronomers will lead to an accurate understanding of the universe’s origins. The authors call this an “apocalypse of knowledge.”

[Image: “The Christianized constellation St. Sylvester (a.k.a. Bootes), from the 1627 edition of Schiller’s Coelum Stellatum Christianum.” Image (and caption) from Star Maps: History, Artistry, and Cartography by Nick Kanas].

There are many interesting things here, including the somewhat existentially horrifying possibility that any intelligent creatures alive in that distant era will have no way to know what is happening to them, where things came from, even where they currently are (an empty space? a dream?), or why.

Informed cosmology will, by necessity, be replaced with religious speculation—with myths, poetry, and folklore.

[Image: 12th-century astrolabe; from Star Maps: History, Artistry, and Cartography by Nick Kanas].

It is worth asking, however briefly and with multiple grains of salt, if something similar has perhaps already occurred in the universe we think we know today—if something has not already disappeared beyond the horizon of cosmic amnesia—making even our most well-structured, observation-based theories obsolete. For example, could even the widely accepted conclusion that there was a Big Bang be just an ironic side-effect of having lost some other form of cosmic evidence that long ago slipped eternally away from view?

Remember that these future astronomers will not know anything is missing. They will merrily forge ahead with their own complicated, internally convincing new theories and tests. It is not out of the question, then, to ask if we might be in a similarly ignorant situation.

In any case, what kinds of future devices and instruments might be invented to measure or explore a cosmic scenario such as this? What explanations and narratives would such devices be trying to prove?

[Image: “Woodcut illustration depicting the 7th day of Creation, from a page of the 1493 Latin edition of Schedel’s Nuremberg Chronicle. Note the Aristotelian cosmological system that was used in the Middle Ages, below, with God and His retinue of angels looking down on His creation from above.” Image (and caption) from Star Maps: History, Artistry, and Cartography by Nick Kanas].

Science writer Sarah Scoles looked at this same dilemma last year for PBS, interviewing astronomer Avi Loeb.

Scoles was able to find a small glimmer of light in this infinite future darkness, however: Loeb believes that there might actually be a way out of this universal amnesia.

“The center of our galaxy keeps ejecting stars at high enough speeds that they can exit the galaxy,” Loeb says. The intense and dynamic gravity near the black hole ejects them into space, where they will glide away forever like radiating rocket ships. The same thing should happen a trillion years from now.

“These stars that leave the galaxy will be carried away by the same cosmic acceleration,” Loeb says. Future astronomers can monitor them as they depart. They will see stars leave, become alone in extragalactic space, and begin rushing faster and faster toward nothingness. It would look like magic. But if those future people dig into that strangeness, they will catch a glimpse of the true nature of the universe.

There might yet be hope for cosmological discovery, in the other words, encoded in the trajectories of these bizarre, fleeing stars.

[Images: (top) “An illustration of the Aristotelian/Ptolemaic cosmological system that was used in the Middle Ages, from the 1579 edition of Piccolomini’s De la Sfera del Mondo.” (bottom) “An illustration (influenced by Peurbach’s Theoricae Planetarum Novae) explaining the retrograde motion of an outer planet in the sky, from the 1647 Leiden edition of Sacrobosco’s De Sphaera.” Images and captions from Star Maps: History, Artistry, and Cartography by Nick Kanas].

There are at least two reasons why I have been thinking about this today. One was the publication of an article by Dennis Overbye earlier this week about the rate of the universe’s expansion.

“There is a crisis brewing in the cosmos,” Overbye writes, “or perhaps in the community of cosmologists. The universe seems to be expanding too fast, some astronomers say.”

Indeed, the universe might be more “virulent and controversial” than currently believed, he explains, caught-up in the long process of simply tearing itself apart.

[Image: A “starburst galaxy” photographed by the Hubble Space Telescope].

One implication of this finding, Overbye adds, “is that the most popular version of dark energy—known as the cosmological constant, invented by Einstein 100 years ago and then rejected as a blunder—might have to be replaced in the cosmological model by a more virulent and controversial form known as phantom energy, which could cause the universe to eventually expand so fast that even atoms would be torn apart in a Big Rip billions of years from now.”

In the process, perhaps the far-future dark ages envisioned by Krauss and Scherrer will thus arrive a billion or two years earlier than expected.

[Image: Engraving by Gustave Doré from The Divine Comedy by Dante Alighieri].

The second thing that made me think of this, however, was a short essay called “Dante in Orbit,” originally published in 1963, that a friend sent to me last night. It is about stars, constellations, and the possibility of determining astronomical time in The Divine Comedy.

In that paper, Frederick A. Stebbins writes that Dante “seems far removed from the space age; yet we find him concerned with problems of astronomy that had no practical importance until man went into orbit. He had occasion to deal with local time, elapsed time, and the International Date Line. His solutions appear to be correct.”

Stebbins goes on to describe “numerous astronomical references in [Dante’s] chief work, The Divine Comedy”—albeit doing so in a way that remains unconvincing. He suggests, for example, that Dante’s descriptions of constellations, sunrises, full moons, and more will allow an astute reader to measure exactly how much time was meant to have passed in his mythic story, and even that Dante himself had somehow been aware of differential, or relativistic, time differences between far-flung locations. (Recall, on the other hand, that Dante’s work has been discussed elsewhere for its possible insights into physics.)

[Image: Diagrams from “Dante in Orbit” (1963) by Frederick A. Stebbins].

But what’s interesting about this is not whether or not Stebbins was correct in his conclusions. What’s interesting is the very idea that a medieval cosmology might have been soft-wired, so to speak, into Dante’s poetic universe and that the stars and constellations he referred to would have had clear narrative significance for contemporary readers. It was part of their era’s shared understanding of how the world was structured.

Now, though, imagine some new Dante of a hundred billion years from now—some new Divine Comedy published in a trillion years—and how it might come to grips with the universal isolation and darkness of Krauss and Scherrer. What cycles of time might be perceived in the lonely, shining bulk of the Milky Way, a dying glow with no neighbor; what shared folklore about the growing darkness might be communicated to readers who don’t know, who cannot know, how incorrect their model of the cosmos truly is?

(Thanks to Wayne Chambliss for the Dante paper).

Alien Geology, Dreamed By Machines

[Image: Synthetic volcanoes modeled by Jeff Clune, from “Plug & Play Generative Networks,” via Nature].

Various teams of astronomers have been using “deep-learning neural networks” to generate realistic images of hypothetical stars and galaxies—but their work also implies that these same tools could work to model the surfaces of unknown planets. Alien geology as dreamed by machines.

The Square Kilometer Array in South Africa, for example, “will produce such vast amounts of data that its images will need to be compressed into low-noise but patchy data.” Compressing this data into readable imagery opens space for artificial intelligence to work: “Generative AI models will help to reconstruct and fill in blank parts of those data, producing the images of the sky that astronomers will examine.”

The results are thus not photographs, in other words; they are computer-generated models nonetheless considered scientifically valid for their potential insights into how regions of space are structured.

What interests me about this, though, is the fact that one of the scientists involved, Jeff Clune, uses these same algorithmic processes to generate believable imagery of terrestrial landscape features, such as volcanoes. These could then be used to model the topography of other planets, producing informed visual guesstimates of mountain ranges, ancient ocean basins, vast plains, valleys, even landscape features we might not yet have words to describe.

The notion that we would thus be seeing what AI thinks other worlds should look like—that, to view this in terms of art history, we are looking at the projective landscape paintings of machine intelligence—is a haunting one, as if discovering images of alien worlds in the daydreams of desktop computers.

(Spotted via Sean Lally; vaguely related, “We don’t have an algorithm for this”).

An Abundance of Glass

Going through some old notes, I found this great line from architect Kengo Kuma’s 2008 book Anti-Object, describing the conceptual ambition—and ultimate anticlimax—of modernist architecture. “Modernism set out to connect time and space,” he wrote, “but ultimately managed only to create objects that used an abundance of glass.”