Rock Impostors

[Image: Photo by Rob Arnold, courtesy National Geographic].

A new type of plastic pollution has been discovered, “hiding in plain sight on the beaches of southern England,” National Geographic reports. These are “rocks aren’t rocks at all,” we read, but “rock impostors” made from heavily weathered plastic, colored with streaks of lead and chromium.

“Because they look geological,” environmental scientist Andrew Turner told the magazine, “you could walk by hundreds of them and not notice.”

(Previously: Welcome to the World of the Plastic Beach and Intermediary Geologies.)

Intermediary Geologies

[Image: From “H / AlCuTaAu” by Revital Cohen and Tuur Van Balen].

For a project called “H / AlCuTaAu”—named after the chemical elements that comprise its final form—artists Revital Cohen and Tuur Van Balen created what they call “an artificial mineral mined from technological artefacts.”

[Image: From “H / AlCuTaAu” by Revital Cohen and Tuur Van Balen].

As they explain in the accompanying, very brief artists’ statement, “Precious metals and stones were mined out of technological objects and transformed back into mineral form. The artificial ore was constructed out of gold (Au), copper (Cu), tantalum (Ta), aluminium (Al) and whetstone; all taken from tools, machinery and computers that were sourced from a recently bankrupt factory.”

Of course, our devices have been geology all along—refined aggregates of the Earth’s surface repurposed as commercial properties and given newfound electrical life—but it’s incredibly interesting to reverse-engineer from our phones, circuitboards, and hard drives entirely new mineral compounds.

[Image: From “H / AlCuTaAu” by Revital Cohen and Tuur Van Balen].

The project also—albeit in the guise of speculative art—very much implies the future of metal recycling, where our future “mines” are as likely to look like huge piles of discarded electronics as they are to be vast holes in the Earth.

In the same way that some of you might have tumbled rocks on your childhood desks for weeks at a time to scrape, abrade, and polish them down to a sparkling sheen, perhaps the mineworks of tomorrow will be benchtop recycling units extracting rare earth metals from obsolete consumer goods.

Armed with drills and ovens, we’ll just cook our own devices down to a primordial goo that can be selectively reshaped into objects.

[Images: From “H / AlCuTaAu” by Revital Cohen and Tuur Van Balen].

You might recall the discovery of so-called “plastiglomerates.” As Science reported last summer, a “new type of rock cobbled together from plastic, volcanic rock, beach sand, seashells, and corals has begun forming on the shores of Hawaii.” Part plastic, part rock, plastiglomerates are the new geology.

Put another way, this is terrestrial science in the age of the Anthropocene, discovering that even the rocks around us are, in a sense, artificial by-products of our own activities, industrial materials fossilized in an elaborate planetary masquerade that now passes for “nature.”

[Image: A “plastiglomerate”—part plastic, part geology—photographed by Patricia Corcoran, via Science].

Here, however, in Cohen’s and Van Balen’s work, these new, artistically fabricated conglomerates are more like alchemical distillations of everyday products: phones, radios, and computers speculatively cooked, simmered, bathed, acid-etched, and reworked into an emergent geology.

[Image: From “H / AlCuTaAu” by Revital Cohen and Tuur Van Balen].

It is a geology hidden all along in the objects we use, communicate with, and sell, a reduced mineralogy of electronics and machines that will someday form a new layer of the Earth.

(Via The New Aesthetic).

Welcome to the World of the Plastic Beach

[Image: The new plastic geology, photographed by Patricia Corcoran, via Science].

Incredibly, a “new type of rock cobbled together from plastic, volcanic rock, beach sand, seashells, and corals has begun forming on the shores of Hawaii,” Science reports.

This new rock type, referred to as a “plastiglomerate,” requires a significant heat-source in order to form, as plastiglomerates are, in effect, nothing but molten lumps of plastic mixed-in with ambient detritus. Hawaii with its coastal and marine volcanoes, offers a near-perfect formational landscape for this artificially inflected geology to emerge—however, Patricia Corcoran, one of the discoverers of these uncanny rocks, thinks we’ll likely find them “on coastlines across the world. Plastiglomerate is likely well distributed, it’s just never been noticed before now, she says.”

We’ve been surrounded by artificial geologies all along.

But is it really geology? Or is it just melted plastic messily assembled with local minerals? Well, it’s both, it seems, provided you look at it on different time-scales. After heavier chunks of plastiglomerate form, fusing with “denser materials, like rock and coral,” Science writes, “it sinks to the sea floor, and the chances it will become buried and preserved in the geologic record increase.” It can even form whole veins streaking through other rock deposits: “When the plastic melts, it cements rock fragments, sand, and shell debris together, or the plastic can flow into larger rocks and fill in cracks and bubbles,” we read.

It doesn’t seem like much of a stretch to suggest that our landfills are also acting like geologic ovens: baking huge deposits of plastiglomerate into existence, as the deep heat (and occasional fires) found inside landfills catalyzes the formation of this new rock type. Could deep excavations into the landfills of an earlier, pre-recycling era reveal whole boulders of this stuff? Perhaps.

The article goes on to refer to the work of geologist Jan Zalasiewicz, which is exactly where I would have taken this, as well. Zalasiewicz has written in great detail and very convincingly about the future possible fossilization of our industrial artifacts and the artificial materials that make them—including plastic itself, which, he suggests, might very well leave traces similar to those of fossilized leaves and skeletons.

In a great essay I had the pleasure of including in the recent book Landscape Futures, Zalasiewicz writes: “Plastics, which are made of long chains of subunits, might behave like some of the long-chain organic molecules in fossil plant twigs and branches, or the collagen in the fossilized skeletons of some marine invertebrates. These can be wonderfully well preserved, albeit blackened and carbonized as hydrogen, nitrogen and oxygen are driven off under the effect of subterranean heat and pressure.” Plastiglomerates could thus be seen as something like an intermediary stage in the long-term fossilization of plastic debris, a glimpse of the geology to come.

Ultimately, the idea that the stunning volcanic beaches of Hawaii are, in fact, more like an early version of tomorrow’s semi-plastic continents and tropical archipelagoes is both awesome and ironic: that an island chain known for its spectacular natural beauty would actually reveal the deeply artificial future of our planet in the form of these strange, easily missed objects washing around in the sand and coral of a gorgeous beach.

(Spotted via Rob Holmes. Vaguely related: War Sand).