Super Reef

[Image: Australia’s Great Barrier Reef].

A “vanished giant has reappeared in the rocks of Europe,” New Scientist writes. It extends “from southern Spain to eastern Romania, making it one of the largest living structures ever to have existed on Earth.”

This “bioengineering marvel” is actually a fossil reef, and it has resurfaced in “a vast area of central and southern Spain, southwest Germany, central Poland, southeastern France, Switzerland and as far as eastern Romania, near the Black Sea. Despite the scale of this buried structure, until recently researchers knew surprisingly little about it. Individual workers had seen only glimpses of reef structures that formed parts of the whole complex. They viewed each area separately rather than putting them together to make one huge structure.”

[Image: The reefs of Raiatea and Tahaa in the South Pacific; NASA/LiveScience].

In fact, Marine Matters, an online journal based in the Queen Charlotte Islands, thinks the reef was even larger: “Remnants of the reef can be found from Russia all the way to Spain and Portugal. Portions have even been found in Newfoundland. They were part of a giant reef system, 7,000km long and up to 60 meters thick which was the largest living structure ever created.”

[Image: The Pearl and Hermes Atoll, NW Hawaii, via NOAA Ocean Explorer].

The reef’s history, according to New Scientist:

About 200 million years ago the sea level rose throughout the world. A huge ocean known as the Tethys Seaway expanded to reach almost around the globe at the Equator. Its warm, shallow waters enhanced the deposition of widespread lime muds and sands which made a stable foundation for the sponges and other inhabitants of the reef. The sponge reef began to grow in the Late Jurassic period, between 170 and 150 million years ago, and its several phases were dominated by siliceous sponges.

Rigid with glass “created by using silica dissolved in the water,” this proto-reef “continued to expand across the seafloor for between 5 and 10 million years until it occupied most of the wide sea shelf that extended over central Europe.”

Thus, today, in the foundations of European geography, you see the remains of a huge, living creature that, according to H.P. Lovecraft, is not yet dead.

Wait, what—

“We do not know,” New Scientist says, “whether the demise of this fossil sponge reef was caused by an environmental change to shallower waters, or from the competition for growing space with corals. What we do know is that such a structure never appeared again in the history of the Earth.” (You can read more here).

For a variety of reasons, meanwhile, this story reminds me of a concert by Japanese sound artist Akio Suzuki that I attended in London back in 2002 at the School of Oriental and African Studies. That night, Suzuki played a variety of instruments, including the amazing “Analapos,” which he’d constructed himself, and a number of small stone flutes, or iwabue.

The amazing thing about those flutes was that they were literally just rocks, hollowed out by natural erosion; Suzuki had simply picked them up from the Japanese beach years before. If I remember right, one of them was even from Denmark. He chose the stones based on their natural acoustic properties: he could attain the right resonance, hit the right notes, and so, we might say, their musical playability was really a by-product of geology and landscape design. An accident of erosion—as if rocks everywhere might be hiding musical instruments. Or musical instruments, disguised as rocks.

[Image: Saxophone valve diagram by Thomas Ohme].

But I mention these two things together because the idea that there might be a similar stone flute—albeit one the size and shape of a vast fossilized reef, stretching from Portugal to southern Russia—is an incredible thing to contemplate. In other words, locked into the rocks of Europe is the largest musical instrument ever made: awaiting a million more years of wind and rain, or even war, to carve that reef into a flute, a flute the size of a continent, a buried saxophone made of fossilized glass, pocketed with caves and indentations, reflecting the black light of uncountable eclipses until the earth gives out.

Weird European land animals, evolving fifty eons from now, will notice it first: a strange whistling on the edges of the wind whenever storms blow up from Africa. Mediterranean rains wash more dust and soil to the sea, exposing more reef, and the sounds get louder. The reef looms larger. Its structure like vertebrae, or hollow backbones, frames valleys, rims horizons, carries any and all sounds above silence through the reef’s reverberating latticework of small wormholes and caves. Musically equivalent to a hundred thousand flutes per square-mile, embedded into bedrock.

[Image: Sheridan Flute Company].

Soon the reef generates its own weather, forming storms where there had only been breezes before; it echoes with the sound of itself from one end to the next. It wakes up animals, howling.

For the last two or three breeding groups of humans still around, there’s an odd familiarity to some of the reef-flute’s sounds, as if every two years a certain storm comes through, playing the reef to the tune of… something they can’t quite remember.

[Image: Sheridan Flute Company].

It’s rumored amidst these dying, malnourished tribes that if you whisper a secret into the reef it will echo there forever; that a man can be hundreds of miles away when the secret comes through, passing ridge to ridge on Saharan gales.

And then there’s just the reef, half-buried by desert, whispering to itself on windless days—till it erodes into a fine black dust, lost beneath dunes, and its million years of musicalized weather go silent forever.

Sound dunes

“Sand dunes in certain parts of the world are notorious for the noises they make,” New Scientist reports, “as sand avalanches down their sides. Some [dunes] emit low powerful booms, others sound like drum rolls or galloping horses, and some are even tuneful. These dune songs have been reported to last for up to 15 minutes and can sound as loud as a low-flying airplane.”

To test for the causes, properties, and other effects of these sand dune booms, “Stéphane Douady of the French national research agency CNRS and his colleagues shipped sand from Moroccan singing dunes back to his lab to investigate.” There, Douady’s team “found that they could play notes by pushing the sand by hand, or with a metal handle.”

The transformation of a sand dune – and, by extension, the entire Sahara desert, indeed any desert – even, by extension, the rust deserts of Mars – into a musical instrument. Music of the spheres, indeed.

“When the sand avalanches, the grains jostle each other at different frequencies, setting up standing waves in the cascading layer, says Douady. These waves reinforce one another, making the layer vibrate like the surface of a loud speaker. ‘What’s funny is that in these massive dunes, only a thin layer of 2 or 3 centimetres is needed to set up the resonance,’ says Douady. ‘Soon all grains begin to vibrate in step.'”

Douady has so perfected his technique of dune resonance that he has now “successfully predicted the notes emitted by dunes in Morocco, Chile and the US simply by measuring the size of the grains they contain.” The music of the dunes, in other words, was determined entirely by the size, shape, and roughness of the sand grains involved, where excessive smoothness dampened the dunes’ sound.

I’m reminded of the coast of Inishowen, a peninsula south of Malin Head in the north of Ireland, where the rocks endlessly grind across one another in the backwash of heaving, metallic, grey Atlantic waves. Under constant pressure of the oceanic, the rocks carve into themselves and each other, chipping down over decades into perfectly polished and rounded spheres, columns, and eggs – as if Archimedean solids or the nested orbits of Kepler could be discovered on the Irish ocean foreshore –

– all glittering. The rocks, I later learned, were actually semi-precious stones, and I had a kind of weird epiphany, standing there above the hush and clatter of bejewelled rocks, rubbing and rubbed one to the other in the depopulated void of a coastal November. It was not a sound easy to forget.

Because the earth itself is already a musical instrument: there is “a deep, low-frequency rumble that is present in the ground even when there are no earthquakes happening. Dubbed the ‘Earth’s hum‘, the signal had gone unnoticed in previous studies because it looked like noise in the data.”

Elsewhere: “Competing with the natural emissions from stars and other celestial objects, our Earth sings like a canary – it drones on in a constant hum of a gazillion notes. If it were several octaves higher, and hence, audible to the human ear,” it could probably get recorded by the unpredictably omnidirectional antennas of ShortWaveMusic and… you could download the sound of the earth. Free Radio Interterrestrial. [Note: the “drones on” link, a sentence or two back, offers a contrary theory (published in 2000) about the origins of these planetary sound waves.]

Which, finally, brings us to Ernst Chladni and his Chladni figures, or: architectonic structures appearing in sand due to patterns of acoustic resonance. The architecture of sand, involving sound—or architecture through sound, involving sand. Silicon assuming structure, humming.

The gist of Chladni’s experiments involved spreading a thin layer of sand across a vibrating plate, changing the frequency at which the plate vibrated, and then watching the sand as it shivered round, forming regular, highly geometric patterns. Those patterns depended upon, and were formed in response to, whatever vibration frequency it was that Chladni chose.

So you’ve got sand, dune music, terrestrial vibration, some Chladni figures – one could be excused for wondering whether the earth, apparently a kind of carbon-ironic bell made of continental plates and oceanic resonators, is really a vast Chladni plate, vibrating every little mineral, every pebble, every grain of sand, perhaps every organic molecule, into complex, three-dimensional, time-persistent patterns for which we have no standard or even technique of measurement. Or maybe William Blake knew how to do it, or Pythagoras, or perhaps even Nikola Tesla, but…

The sound dunes continue to boom and shiver. The deserts roar. The continents hum.

Musicalizing the weather through landscape architecture

The idea of listening to a landscape – how to podcast a landscape, for instance – tends to be literally overlooked in favor of a site’s visual impact or even its smell. When I was in Greece a few years ago, for instance, hiking toward an abandoned village on Tilos, every step I took crushed wild onions, herbs, and different flowers, and a temporary envelope of scent, picked up by breezes, floated all around me as I walked uphill. I may not remember every single detail of what that path *looked* like – but I do remember how it *smelled*.
It was like hiking through salad.
In any case, you don’t often see people packing up the family car, or hopping onto a train, to tour Wales or the Green Mountains of Vermont so that they can listen to the hills – they’ll go out to look at autumn leaf colors, sure, or take photographs of spring wildflowers. But to go all the way to Wales so they can hear a particular autumn wind storm howling through the gorges, a storm that only lasts two days of every year? Specifically going somewhere to *listen to the landscape*.
Seasonal weather events and their sonic after-effects. The Great November Moan.
All of which brings me to the idea of sound mirrors.


Musicalizing a weather system through landscape architecture.
BLDGBLOG here proposes a series of sound mirrors to be built in a landscape with regular, annual wind phenomena. A distant gully, moaning at 2am every second week in October due to northern winds from Canada, has its low, droning, cliff-created reverb carefully echoed back up a chain of sound mirrors to supply natural soundscapes for the sleeping residents of nearby towns.
Or a crevasse that actually makes no sound at all has a sound mirror built nearby, which then amplifies and redirects the ambient air movements, coaxing out a tone – but only for the first week of March. Annually.
Landscape as saxophone.


It’s a question of interacting with the earth’s atmosphere through human geotechnical constructions. Through sound mirrors.
What you’d need: 1) Detailed meteorological charts of a region’s annual wind-flow patterns. 2) Sound mirrors. 3) A very large arts grant.
You could then musicalize the climate.
With exactly placed and arranged sound mirrors atop a mesa, for instance, deep inside a system of canyons – whether that’s in the Peak District or Utah’s Canyonlands National Park – or even in Rajasthan, or western Afghanistan – you could interact with the earth’s atmosphere to create music for two weeks every year, amplifying the natural sounds of seasonal air patterns.
People would come, camp out, check into hotels, open all their windows – and just listen to the landscaped echoes.


A few questions arise: in this context, does Stonehenge make any sounds? What if – and this is just a question – it was built not as a prehistoric astronomical device but as a *landscape wind instrument*? You’d be out there wandering around the Cotswolds, thinking oh – christ, it’s 5000 years ago and we’re lost, but: what’s that? I hear Stonehenge… And then you locate yourself.
Sonic landmark.
This raises the possibility of building smaller versions of these sound mirrors in urban neighborhoods so that, for instance, Berlin’s Prenzlauer Berg sounds different than Mitte, which sounds different than Kreuzberg – which sounds different than South Kensington, which is different than Gramercy Park… Etc.
You’d always know which district of the city you were in – even which city you were in, full stop – based on what the wind sounded like.
(Which reminds me of another idea: that, to attract people to a city without much going for it, you could *flavor the water supply*: make it taste like Doritos, for instance, and then sell that on huge billboards: buy your new home in Detroit, the water tastes like Doritos… the water tastes like tofurky…).
Second: is there a sonic signature to the US occupation of Baghdad? And I don’t mean rumbling Hummers and airplane engines, I mean what if all those Bremer walls –


– generate sounds during passing wind storms? All the American military bases of Iraq moaning at 3am as desert breezes pass by.
What does the occupation *sound like*?
A sonic taxonomy of architectural forms could begin…