A Spatial History of Sleep

[Image: Fish preserved in the eternal ocean of a closed jar at the American Museum of Natural History; old Instagram by Geoff Manaugh].

Although this is a classic example of something I am totally unqualified to talk about, a recent report over at ScienceNews caught my eye, about the spatial origins of REM sleep.

In a nutshell, the paper suggests that “sleep may have originated underwater 450 million years ago,” which is apparently when “the cells that kick off REM sleep” first evolved in fish. “During REM or paradoxical sleep,” we read, “the brain lights up with activity almost like it’s awake. But the muscles are paralyzed (except for rapid twitching of the eyes) and the heart beats erratically.”

Dreaming, it’s as if ancient fish learned to pass into a different kind of ocean, a fully immersive neural environment coextensive with the one they physically swam within.

What’s so interesting about this—at least for me—is the implication that REM sleep, and, thus, by extension, the very possibility of animals dreaming, was made possible by immersion in an all-encompassing spatial environment such as the sea. In other words, it took the vast black depths of the ocean to facilitate the kind of uninterrupted, meditative stillness in which REM sleep could best occur. Those ancestral cells then survived into our own mammalian brains, and, by dreaming, it’s perhaps a bit like we retreat back into some lost experience of the oceanic.

[Image: “Sleeping Beauty” by Hans Zatzka].

In any case, the study’s authors are probably rolling their eyes at this point, but so much comes to mind here—everything from H.P. Lovecraft’s marine-horror stories and their alien call of the deep—such as “The Shadow Over Innsmouth”—to the speculative idea that there might be other spatial environments, comparable to the ocean, that, after long-enough exposure, could inspire unique neurological processes otherwise impossible in traditional environments.

I’m thinking of Jeremy Narby’s strange book, Cosmic Serpent: DNA and the Origins of Knowledge, about human culture amidst the impenetrable rain forests of the Americas, or even the long-running sci-fi trope of the human mind expanding in a psychedelic encounter with deep space.

In fact, this makes me wonder about the landscapes of other planets, and whether crushingly powerful gravitational regimes in alien superstorms or bizarre swirling ecosystems deep inside liquid rock might affect the neurological development of species that live there. What other kinds of sleep are environmentally possible? Does every planet come with a different kind of dreaming? Can the design or formation of new kinds of space catalyze new forms of sleep? Are there deeper or higher levels of the brain, so to speak, waiting to appear in radically different spatial environments?

We already have astrobiology, astrogeology, even astrolinguistics, but I wonder what it would look like to study sleep on other worlds. Exosomnology.

Exotempestology

Purely in terms of extreme landscapes, this planet is certainly one of the most notable: eight times the mass of Jupiter, but starless, adrift, an “orphaned world” without a sun, “somehow shot out of its orbit” into the darkness of space, its skies thundering with storms of molten metal.

(Story is from 2015, but randomly rediscovered this morning in my bookmarks.)

Terrestrial Warfare, Drowned Lands

While looking at maps of rural New York State, roughly 70 miles northwest of Manhattan, near the border with New Jersey, I noticed a series of small communities called “Islands.” Pine Island, Maple Island, Black Walnut Island, Pellets Island, etc.—these are tiny hamlets otherwise surrounded by dry land, well away from the sea, the Hudson, or any other large bodies of water.

It turns out these are the “drowned lands of the Wallkill,” a river with such an irregular bed, that so commonly flooded every season, that high points in the landscape would become temporary islands.

According to The History of Sussex and Warren Co., NJ by James P. Snell, it wasn’t until legislation was passed in 1807—creating wonderfully named “drowned-land commissioners”—that the region was eventually drained.

Briefly, anyone interested in liminal landscapes should find Snell’s description of the Drowned Lands, prior to their drainage, fascinating. The Wallkill itself had no real path or bed, Snell explains, the meadows it flowed through were naturally dammed at one end by glacial boulders from the Ice Age, the whole place was clogged with “rank vegetation,” malarial pestilence, and tens of thousands of eels, and, what’s more, during flood season “the entire valley from Denton to Hamburg became a lake from eight to twenty feet deep.”

The landscape is also almost literally Biblical: “On the Southwestern border of the swamp, in the town of Warwick, two lofty and isolated mountains rear their summits. They are called Adam and Eve. Formerly they swarmed with rattlesnakes, but these the inhabitants have exterminated.”

In any case, this eerie, terrestrial-aquatic borderland—reminiscent of John Langan’s novel The Fisherman—was radically redesigned following the construction of a large drainage canal and a subsequent series of dams.

But the dams were controversial, and this is where things get novelistic.

A half-century of “war” broke out among local supporters of the dams and their foes: “The dam-builders were called the ‘beavers’; the dam destroyers were known as ‘muskrats.’ The muskrat and beaver war was carried on for years,” with skirmishes always breaking out over new attempts to dam the floods.

Here’s one example, like a scene written by Victor Hugo transplanted to New York State: “A hundred farmers, on the 20th of August, 1869, marched upon the dam to destroy it. A large force of armed men guarded the dam. The farmers routed them and began the work of destruction. The ‘beavers’ then had recourse to the law; warrants were issued for the arrest of the farmers. A number of their leaders were arrested, but not before the offending dam had been demolished. The owner of the dam began to rebuild it; the farmers applied for an injunction. Judge Barnard granted it, and cited the owner of the dam to appear and show cause why the injunction should not be made perpetual. Pending a final hearing, high water came and carried away all vestige of the dam.”

And so on and so forth, dams rising and falling, lands drowning and being drained again, farmers pitted against hydrologists, for generations. You can easily imagine this as the backdrop for a historical epic, set within a day’s journey from Manhattan on the cusp of modernity, a family committed to raising land from ambiguity and murk colliding with primordial forces led by hostile neighbors dedicated to maintaining inundation.

Two visions of landscape, at war.

Today, the land is hugely fertile and apparently a great source of topsoil; it has become known as the Black Dirt Region. You can even buy Black Dirt Bourbon.

But still, these isolated hills and ridges call themselves islands, as if awaiting the return of the flood.

(All images via Google Maps. Vaguely related on BLDGBLOG: Tactical Landscaping and Terrain Deformation; readers might also enjoy David Blackbourn’s superb book, The Conquest of Nature: Water, Landscape, and the Making of Modern Germany.)

Terrestrial Oceanica

I’m grateful for two recent opportunities to publish op-eds, one for the Los Angeles Times back in May and the other just this morning in the New York Times. Both look at seismic activity and its poetic or philosophical implications, including fault lines as sites of emergence for a future world (“A fault is where futures lurk”).

They both follow on from the Wired piece about the Walker Lane, as well as this past weekend’s large earthquakes here in Southern California.

The L.A. Times op-ed specifically looks at hiking along fault lines, including the San Andreas, where, several years ago, I found myself walking alone at sunset, without cell service, surrounded by tarantulas. I was there in the midst of a “tarantula boom,” something I did not realize until I checked into a hotel room and did some Googling later that evening.

In any case, “Faults are both a promise and a threat: They are proof that the world will remake itself, always, whether we’re prepared for the change or not.”

The New York Times piece explores the philosophical underpinnings of architecture, for which solid ground is both conceptually and literally foundational.

The experience of an earthquake can be destabilizing, not just physically but also philosophically. The idea that the ground is solid, dependable—that we can build on it, that we can trust it to support us—undergirds nearly all human terrestrial activity, not the least of which is designing and constructing architecture… We might say that California is a marine landscape, not a terrestrial one, a slow ocean buffeted by underground waves occasionally strong enough to flatten whole cities. We do not, in fact, live on solid ground: We are mariners, rolling on the peaks and troughs of a planet we’re still learning to navigate. This is both deeply vertiginous and oddly invigorating.

To no small extent, nearly that entire piece was inspired by a comment made by Caltech seismologist Lucy Jones, who I had the pleasure of interviewing several years ago during a Fellowship at USC. At one point in our conversation, Jones emphasized to me that she is a seismologist, not a geologist, which means that she studies “waves, not rocks.” Waves, not rocks. There is a whole new way of looking at the Earth hidden inside that comment.

Huge thanks, meanwhile, to Sue Horton and Clay Risen for inviting me to contribute.

(Images: (top) Hiking at the San Andreas-adjacent Devil’s Punchbowl, like a frozen wave emerging from dry land. (bottom) A tarantula walks beside me at sunset along the San Andreas Fault near Wallace Creek, October 2014; photos by BLDGBLOG.)

Walker Lane Redux

It’s been an interesting few days here in Southern California, with several large earthquakes and an ensuing aftershock sequence out in the desert near Ridgecrest. Ridgecrest, of course, is at the very southern edge of the Walker Lane—more properly part of the Eastern California Shear Zone—a region of the country that runs broadly northwest along the California/Nevada state border that I covered at length for the May 2019 issue of Wired.

[Image: My own loose sketch of the Walker Lane, using Google Maps].

To make a story short, a handful of geologists have speculated, at least since the late 1980s, that the San Andreas Fault could actually be dying out over time—that the San Andreas is jammed up in a place called the “Big Bend,” near the town of Frazier Park, and that it is thus losing its capacity for large earthquakes.

As a result, all of that unreleased seismic strain has to go somewhere, and there is growing evidence—paleoseismic data, LiDAR surveys, GPS geodesy—that the pent-up strain has been migrating deep inland, looking for a new place to break.

That new route—bypassing the San Andreas Fault altogether—is the Walker Lane (and its southern continuation into the Mojave Desert, known as the Eastern California Shear Zone).

What this might mean—and one of the reasons I’m so fascinated by this idea—is that a new continental margin could be forming in the Eastern Sierra, near the California/Nevada state border, a future line of breakage between the Pacific and North American tectonic plates.

If this is true, the Pacific Ocean will someday flood north from the Gulf of California all the way past Reno—but, importantly, this will happen over the course of many millions of years (not due to one catastrophic earthquake). This means that no humans alive today—in fact, I would guess, no humans at all—will see the final result. If human civilization as we know it is roughly 15,000 years old, then civilization could rise and fall nearly 700 times before we even get to 10 million years, let alone 15 million or 20.

In any case, these recent big quakes out near Ridgecrest do not require that the most extreme Walker Lane scenario be true—that is, they do not require that the Walker Lane is an incipient continental margin. However, they do offer compelling and timely evidence that the Walker Lane region is, at the very least, more seismically active than its residents might want to believe.

I could go on at great length about all this, but, instead, I just want to point out one cool thing: the far northern route of the Walker Lane remains something of a mystery. If you’ve read the Wired piece, you’ll know that, for the Walker Lane to become a future continental edge, it must eventually rip back through California and southeastern Oregon to reach the sea. However, the route it might take—basically, from Pyramid Lake to the Pacific—is unclear, to say the least.

One place that came up several times while I was researching my Wired article was the northern California town of Susanville. Susanville is apparently a promising place for study, as geologists might find emergent faults there that could reveal the future path of the Walker Lane.

If you draw a straight line from the Reno/Pyramid Lake region through Susanville and keep going, you’ll soon hit a town called Fall River Mills. Interestingly, following the long aftershock sequence of these Ridgecrest quakes, there was a small quake in Fall River Mills this morning.

While seeing patterns in randomness—let alone drawing magical straight lines across the landscape—is the origin of conspiracy theory and the bane of serious scientific thinking, it is, nevertheless, interesting to note that the apparently linear nature of the Walker Lane could very well continue through Fall River Mills.

[Image: The Ridgecrest quakes and their aftershocks seem to support the idea of a linear connection along the Walker Lane; note that I have added a straight orange line in the bottom image, purely to indicate the very broad location of the Walker Lane].

While we’re on the subject, it is also interesting to see that, if you continue that same line just a little bit further, connecting Pyramid Lake to Susanville to Fall River Mills, you will hit Mt. Shasta, an active volcano in northern California. Again, if you’ve read the Wired piece, you’ll know that volcanoes seem to have played an interesting role in the early formation of the San Andreas Fault millions of years ago.

In any case, in cautious summary, I should emphasize that I am just an armchair enthusiast for the Walker Lane scenario, not a geologist; although I wrote a feature article about the Walker Lane, I am by no means an expert and it would be irresponsible of me to suggest anything here as scientific fact. It does interest me, though, that aftershocks appear to be illuminating a pretty dead-linear path northwest up the Walker Lane, including into regions where its future route are not yet clear.

Insofar as the locations of these aftershocks can be taken as scientifically relevant—not just a seismic coincidence—the next few weeks could perhaps offer some intriguing suggestions for the Walker Lane’s next steps.

The Atlas of Natural Regions

[Image: “Saint-Valentin, Champagne berrichonne (Centre-Val-de-Loire), 2019, by Eric Tabuchi].

I’ve been enjoying the Instagram account of photographer Eric Tabuchi for quite a while now. Tabuchi is working on an ambitious ten-year photographic project, kicked off in 2017, that he calls The Atlas of Natural Regions, basically a catalog of spatial conditions found throughout France.

The project “aims to create a photographic archive offering a broad overview of the diversity of the buildings, but also the landscapes, that make up the French territory,” Tabuchi explains. “Ultimately, 50 shots will be taken in each of France’s natural regions, geographical and cultural entities that are simple to grasp by their size (a few tens of kilometers).”

It will include 25,000 photographs when it’s done—and I am already excited to see the final exhibition or book when it’s complete. So far, there have been flooded quarries, sports complexes, and emergency training towers, industrial ruins, coastal bunkers, and surreal scenes that resemble something designed by Simon Stålenhag.

Tabuchi’s Instagram account is well worth following, and you can also support his work by purchasing a print.

Have Clock, Will Travel

[Image: From The Hunt For Red October, via Quora].

There’s a line in The Hunt For Red October where a submarine navigator jokes, “Give me a stopwatch and a map, and I’ll fly the Alps in a plane with no windows.” I was reminded of that comment by reports of a new atomic clock that will allegedly enable “futuristic navigation schemes”:

“Every single spacecraft exploring deep space today relies on navigation that’s performed back here at Earth,” said [Jill] Seubert, who’s based at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Earth-based antennas send signals to spacecraft, which the spacecraft echo back. By measuring a signal’s round-trip time within a billionth of a second, ground-based atomic clocks in the Deep Space Network help pinpoint the spacecraft’s location.

With the new Deep Space Atomic Clock, “we can transition to what we call one-way tracking,” Seubert said. A spaceship would use such a clock onboard to measure the time it takes for a tracking signal to arrive from Earth, without having to send that signal back for measurement with ground-based atomic clocks. That would allow a spacecraft to judge its own trajectory.

One might say that the ship is navigating time as much as it is traveling through space—steering through the time between things rather than simply following the lines that connect one celestial object to another.

The general problem of ship orientation and navigation in deep space is a fascinating one, and it has led to ideas like using “dead stars” as fixed directional beacons, a kind of thanato-stellar GPS. This is “the long-sought technology known as pulsar navigation,” Nature reported last year. “For decades, aerospace engineers have dreamed of using these consistently repeating signals for navigation, just as they use the regular ticking of atomic clocks on satellites for GPS.” You head toward something that’s only consistent because it’s dead.

There is something really interesting here, where human navigators and their far-flung machines are confronted with a landscape so vast it is all but devoid of local landmarks. Imagine the cognitive skills necessary for early humans to wander forth, on foot, across colossal and empty steppes, long before modern navigational tools, or picture autonomous, near-frozen hard-drives falling endlessly outward toward stars they might never reach: these scenarios lend themselves to metaphor just as much as they present real-world cartographic problems masked as an encounter with landscapes impossibly huge.

A landscape so big it becomes time, and only a clock can conquer it; or a space so empty, its only fixed points are long dead.

Terrestrial Concussion / Infinite Half-Life

[Image: Courtesy Xenon Collaboration, via ScienceNews].

Earthquakes, popularly seen as discrete, large-scale events that occur only once every few years—once a decade, once a century, once every thousand years—turn out to be nearly continuous. There are always earthquakes.

According to ScienceNews, “millions of tiny, undetected earthquakes rumble through the ground” every day in California. These are “quakes of such small magnitude that their signals were previously too small to be separated from noise.”

In other words, while we wait for the Big One—a true seismic event with the power to punctuate and interrupt everyday life—there are millions of smaller earthquakes constantly rattling the floors, walls, and roads we consider stable.

I’m reminded of a recent article in the New York Times about football player Ryan Miller. “Miller has had 10 concussions in all,” we read, “and that is to understate his battering. The brain sits in fluid inside the armor of a skull, and even nonconcussive whacks can result in brain colliding with bone. A couple of hard hits can come to resemble a concussion. The average football player, according to Cantu, takes 600 to 800 hits in high school and 800 to 1,000 in college.”

Concussions are like earthquakes, in other words: we wait for the Big One, but this means that, by definition, we miss the cumulative effects of all the little shocks along the way. Everything is moving; the earth is not stable; the landscape is jolting and cracking at a concussive rate, every day, beneath our feet.

On the opposite side of this temporal spectrum, the same website, ScienceNews, also reported that some radioactive decay takes so long, they can outlast our current universe.

“It takes 1 trillion times the age of the universe for a xenon-124 sample to shrink by half,” we read. “The decay, seen in xenon-124 atoms, happens so sparingly that it would take 18 sextillion years (18 followed by 21 zeros) for a sample of xenon-124 to shrink by half, making the decay extremely difficult to detect.”

That’s a bit of an understatement: it means you would need a machine significantly older than the universe to detect and measure these moments of decay.

[Image: Xenon, via Images of Elements].

The breakdown of this specific example—the element xenon-124—involves something called “two-neutrino double electron capture,” and I won’t even pretend to understand what it means. Nevertheless, what interests me here is the implied possibility that, well, on a universal timescale, everything is decaying. Everything is breaking down. But it occurs on a scale so huge it is inaccessible to human experience, certainly, but perhaps even to human cognition.

Imagine an element that decays only once every 750 trillion years. (Our current universe is 14 billion years old.) Imagine a creature living 749.999 trillion years, arrogantly thinking that its world is immortal.

In any case, this feels like the exact inverse of the previous example: while we’re on the hunt for radioactive decay, or while we’re out there looking for millions of overlooked mini-quakes and micro-concussions, we might actually miss detecting these massive punctuations of time, epic cycles so rare and daunting that our own universe cannot accommodate them.

For those attentive enough, in other words, there are concussions and earthquakes constantly; yet, on a large-enough timescale, everything decays, everything breaks down, everything has a half-life. Everything is radioactive. In the midst of all that, we make breakfast and take the subway to work.

300 Years of Dust

I’m late to the news that the ancient Akkadian Empire might have collapsed due to “dust activity” that “persisted for 300 years.” As a resident of Los Angeles, it’s sobering to read.

“Archaeologists have long been baffled by the abrupt abandonment of northern Mesopotamian settlements roughly 4,200 years ago,” Eos reports. This otherwise mysterious abandonment might have been catalyzed by three centuries of dust—“dust for 300 years”—arising from extreme drought and aridity.

The dust was so bad, in fact, it left a geological record in regional stalactites.

Perhaps that’s how the end will come, as a slow but relentless accumulation of dust on windowsills—in California, Arizona, Nevada—a civilizational collapse that should have been signaled, in retrospect, by the rapid growth of the house-cleaning economy, but that, for at least a generation, will take the form of puzzled homeowners wiping wetted cloths along wood trim, wondering if there’s something going on outside.

“Each dive feels like floating into a science fiction film”

[Image: Schmidt Ocean Institute, via ScienceDaily].

It’s hard to resist a headline claiming that “otherworldly mirror pools and mesmerizing landscapes” have been “discovered on [the] ocean floor.” Otherworldly mirror pools, like some sort of magic cauldron at the bottom of the sea.

But it’s equally hard to parse what exactly this article is stating. It would appear that unusual geological structures found 2,000 meters below the surface of the Gulf of California have had the superficial effect of resembling mirror images of the rocks below them:

While exploring hydrothermal vent and cold seep environments, Dr. Mandy Joye (University of Georgia), and her interdisciplinary research team discovered large venting mineral towers that reach up to 23 meters in height and 10 meters across. These towers featured numerous volcanic flanges that create the illusion of looking at a mirror when observing the superheated (366ºC) hydrothermal fluids beneath them.

In other words, this sounds more like a useful analogy: the rocks up here look like the rocks down there. It’s as if we’re looking into a mirror.

But what I wish this meant—and perhaps it does, but I’m simply misreading the article—is that bizarre thermal effects, combined with unusually high dissolved-metal content in the water, has created a series of mirror planes, or literally reflective, high-density water tables in the deep ocean that visually duplicate anything above or below them.

Because, if so, imagine the possibilities for turning these into lenses, like some wild, far-future, deep-sea water telescope in which light is bounced back and forth amongst dissolved-metal mirrors hovering in the water table. You could concentrate and focus light in the deep ocean, using naturally occurring, highly-mineralized thermal boundaries, perhaps suggesting a new type of visual-communication network in the sea. Future Navy signaling tech, using nothing but water.

Anyway, whatever the case may be, the poetry of this is incredible. Silvered planes in the ocean forming other-worldly, black labyrinths suddenly illuminated by the lights of a passing submarine.

Fault Lines/Point Clouds

[Image: Otherwise unrelated satellite view of the Pyramid Lake Fault (diagonal line from top left to bottom right), via Google Maps].

As a quick update to the Walker Lane post, there are some Walker Lane fault system LiDAR data sets available for download, if you’re able to play around with that sort of thing.