Terrestrial Concussion / Infinite Half-Life

[Image: Courtesy Xenon Collaboration, via ScienceNews].

Earthquakes, popularly seen as discrete, large-scale events that occur only once every few years—once a decade, once a century, once every thousand years—turn out to be nearly continuous. There are always earthquakes.

According to ScienceNews, “millions of tiny, undetected earthquakes rumble through the ground” every day in California. These are “quakes of such small magnitude that their signals were previously too small to be separated from noise.”

In other words, while we wait for the Big One—a true seismic event with the power to punctuate and interrupt everyday life—there are millions of smaller earthquakes constantly rattling the floors, walls, and roads we consider stable.

I’m reminded of a recent article in the New York Times about football player Ryan Miller. “Miller has had 10 concussions in all,” we read, “and that is to understate his battering. The brain sits in fluid inside the armor of a skull, and even nonconcussive whacks can result in brain colliding with bone. A couple of hard hits can come to resemble a concussion. The average football player, according to Cantu, takes 600 to 800 hits in high school and 800 to 1,000 in college.”

Concussions are like earthquakes, in other words: we wait for the Big One, but this means that, by definition, we miss the cumulative effects of all the little shocks along the way. Everything is moving; the earth is not stable; the landscape is jolting and cracking at a concussive rate, every day, beneath our feet.

On the opposite side of this temporal spectrum, the same website, ScienceNews, also reported that some radioactive decay takes so long, they can outlast our current universe.

“It takes 1 trillion times the age of the universe for a xenon-124 sample to shrink by half,” we read. “The decay, seen in xenon-124 atoms, happens so sparingly that it would take 18 sextillion years (18 followed by 21 zeros) for a sample of xenon-124 to shrink by half, making the decay extremely difficult to detect.”

That’s a bit of an understatement: it means you would need a machine significantly older than the universe to detect and measure these moments of decay.

[Image: Xenon, via Images of Elements].

The breakdown of this specific example—the element xenon-124—involves something called “two-neutrino double electron capture,” and I won’t even pretend to understand what it means. Nevertheless, what interests me here is the implied possibility that, well, on a universal timescale, everything is decaying. Everything is breaking down. But it occurs on a scale so huge it is inaccessible to human experience, certainly, but perhaps even to human cognition.

Imagine an element that decays only once every 750 trillion years. (Our current universe is 14 billion years old.) Imagine a creature living 749.999 trillion years, arrogantly thinking that its world is immortal.

In any case, this feels like the exact inverse of the previous example: while we’re on the hunt for radioactive decay, or while we’re out there looking for millions of overlooked mini-quakes and micro-concussions, we might actually miss detecting these massive punctuations of time, epic cycles so rare and daunting that our own universe cannot accommodate them.

For those attentive enough, in other words, there are concussions and earthquakes constantly; yet, on a large-enough timescale, everything decays, everything breaks down, everything has a half-life. Everything is radioactive. In the midst of all that, we make breakfast and take the subway to work.

Walker Lane

[Image: The shadow of the San Andreas Fault emerges near sunset at Wallace Creek; photo by BLDGBLOG].

All four long-term readers of BLDGBLOG will know that I am obsessed with the San Andreas Fault, teaching an entire class about it at Columbia and visiting it whenever possible as a hiking destination.

The San Andreas is often a naturally stunning landscape—particularly in places like Wallace Creek, Tomales Bay, or even the area near Devil’s Punchbowl—but the fault’s symbolism, as the grinding edge of two vast tectonic plates, where worlds slide past one another toward an unimaginable planetary future, adds a somewhat mystical element to each visit. It’s like hiking along a gap through which a new version of the world will emerge.

I was thus instantly fascinated several years ago when I read about something called the Walker Lane, a huge region of land stretching roughly the entire length of the Eastern Sierra, out near the California/Nevada border, which some geologists now believe is the actual future edge of the North American continent—not the San Andreas. It is an “incipient” continental margin, in the language of structural geology.

[Image: My own sketch of the Walker Lane, based on Google Maps imagery].

In fact, the Walker Lane idea suggests, the San Andreas is so dramatically torqued out of alignment at a place northwest of Los Angeles known as the “Big Bend” that it might be doomed to go dormant over the course of several million years.

That’s good news for San Franciscans of the far future, but it means that a world-shattering amount of seismic strain will need to go somewhere, and that somewhere is a straight shot up the Eastern Sierra along the Walker Lane: a future mega-fault, like today’s San Andreas, that would stretch from the Gulf of California, up through the Mojave Desert, past Reno, and eventually back out again to the waters of the Pacific Ocean (most likely via southwest Oregon).

Much of this route, coincidentally, is followed closely by Route 395, which brings travelers past extinct volcanoes, over an active caldera, within a short drive of spectacular hot springs, and near the sites of several large earthquakes that have struck the region over the past 150 years.

That region—again, not the San Andreas—is where the true tectonic action is taking place, if the Walker Lane hypothesis is to be believed.

[Image: The gorgeous Hot Creek Geologic Site, along the Walker Lane; photo by BLDGBLOG].

In an absolute dream come true, I was able to turn this armchair obsession of mine into a new feature for Wired, and it went online this morning as part of their May 2019 issue.

For it, I spend some time out in the field with Nevada State Geologist James Faulds, a major proponent of the Walker Lane hypothesis. We visited a fault trench, we hiked along a growing rift southeast of Pyramid Lake, and we met several of his colleagues from the University of Nevada, Reno, including geodesist Bill Hammond and paleoseismologist Rich Koehler.

I also spoke with early advocates of the Walker Lane hypothesis, particularly Amos Nur and Tanya Atwater, both of whom have been suggesting, since at least the early 1990s, that something major might be in store for this under-studied region.

[Image: Coso Volcanic Field, near where the Eastern California Shear Zone meets the Walker Lane; photo by BLDGBLOG].

The Wired story is almost entirely focused on the science behind discovering the Walker Lane, from GPS geodesy to LiDAR, but there are also a few scattered thoughts on deep time and the vast imaginative horizon within which geologists operate. This comes mostly by way of Marcia Bjornerud’s new book Timefulness. There is also a brief look at indigenous seismic experience as allegedly recorded in Native American petroglyphs along the Walker Lane, via an interesting paper by Susan Hough.

But, on a more symbolic level, the Walker Lane totally captivates me, including how vertiginous and exciting it is to think about—let alone to hike along!—a new edge to the known world, a linear abyss emerging in the desert outside Los Angeles, slowly rifting north through hundreds of miles of dead volcanoes and disorganized fault lines, gradually pulling all of it together into one clear super-system, flooding with the waters of the Gulf of California, bringing a new version of the Earth’s surface into being in real-time.

In any case, check out the piece over at Wired if any of this sounds up your alley. The piece includes some great photos by Tabitha Soren.

Wave Form

[Image: San Andreas Fault mechanics in Parkfield, California, visualized by Ricky Vega].

With the San Andreas Fault on the brain, I’ve been thinking a lot about a course I taught a few years ago at Columbia University exploring the possibility of a San Andreas Fault National Park.

The course was organized around a few basic questions, such as: what does it mean to preserve a landscape that, by definition, is always changing, even poised on the cusp of severe internal disruption? Are there moral, even philosophical, issues involved in welcoming a site of natural violence and potential catastrophe into our nation’s historical narrative? Further, what kind of architecture is most appropriate for a Park founded to highlight seismic displacement?

One of the most interesting things to come out of the course was a set of digital models produced by a student named Ricky Vega (with assistance from other students in gathering the necessary data).

Vega’s images showed the San Andreas Fault not as a line across the landscape, but as a three-dimensional, volumetric form within the Earth. A spatial environment reminiscent of a sinuous building. A serpentine pavilion, to use a bad pun.

[Image: San Andreas Fault mechanics in San Bernardino, California, visualized by Ricky Vega].

The point I was hoping to make by assigning this to my students was that spatial scenarios found far outside of what is normally considered “architecture” can nonetheless pose an interesting challenge for architectural thinking and representation.

In other words, if you, as an architect, are adept at visually depicting complex spaces—through various output such as sections and axonometric diagrams—then what would happen if you were to apply those skills to geology or plate tectonics? The layered relationship of one part of the Earth to another is intensely spatial—it is an explicitly, if metaphorically, architectural one.

Indeed, images such as the one seen immediately below, taken from the California Division of Mines and Geology, would not be out of place in an architectural studio.

[Image: An otherwise unrelated diagram taken from the California Division of Mines and Geology].

So the question was: by using architectural techniques to explore complicated geological scenarios such as the San Andreas Fault, what can architects learn about the possibilities—or, for that matter, limitations—of their most basic representational techniques?

Further, what might the resulting images be able to teach geologists—if anything—about how they can better represent and depict their own objects of study? Perhaps architects and geologists should collaborate more often.

[Image: San Andreas Fault mechanics in Watsonville, California, visualized by Ricky Vega].

Each of Vega’s original models is huge and cuts a mesmerizing, even aquatic profile, with equal shades of Zaha Hadid and Peter Eisenman. If you could reach into the planet and extract an entire fault line, what would it look like? A spine or a wave? A fallen branch or a river? These images are at least one interesting attempt at an answer.

(If you want to read more about the course—a class I would absolutely love to teach again, especially now that I am living within easy driving distance of the San Andreas Fault—check out the original write-up.)

Seismic Potential Energy

[Image: Photo by BLDGBLOG].

I got to hike with my friend Wayne last week through a place called the Devil’s Punchbowl, initially by way of a trail out and back from a very Caspar David Friedrich-ian overlook called the Devil’s Chair.

[Image: Wayne, Rückenfigur; photo by BLDGBLOG].

The Punchbowl more or less lies astride the San Andreas Fault, and the Devil’s Chair, in particular, surveils this violently serrated landscape, like gazing out across exposed rows of jagged teeth—terra dentata—or perhaps the angled waves of a frozen Hokusai painting. The entire place seems charged with the seismic potential energy of an impending earthquake.

[Image: It is difficult to get a sense of scale from this image, but this geological feature alone is at least 100 feet in height, and it is only one of hundreds; photo by BLDGBLOG].

The rocks themselves are enormous, splintered and looming sometimes hundreds of feet over your head, and in the heat-haze they almost seem buoyant, subtly bobbing up and down with your footsteps like the tips of drifting icebergs.

[Image: Looking out at the Devil’s Chair; photo by BLDGBLOG].

In fact, we spent the better part of an hour wondering aloud how geologists could someday cause massive underground rock formations such as these to rise to the surface of the Earth, like shipwrecks pulled from the bottom of the sea. Rather than go to the minerals, in other words, geologists could simply bring the minerals to them.

[Image: Photo by BLDGBLOG].

Because of the angles of the rocks, however, it’s remarkably easy to hike out amidst them, into open, valley-like groins that have been produced by tens of thousands of years’ worth of rainfall and erosion; once there, you can just scramble up the sides, skirting past serpentine pores and small caves that seem like perfect resting spaces for snakes, till you reach sheer drop-offs at the top.

There, views open up of more and more—and more—of these same tilted rocks, leading on along the fault, marking the dividing line between continental plates and tempting even the most exhausted hiker further into the landscape. The problem with these sorts of cresting views is that they become addictive.

[Image: Wayne, panoramically doubled; photo by BLDGBLOG].

At the end of the day, we swung by the monastic community at St. Andrew’s Abbey, which is located essentially in the middle of the San Andreas Fault. Those of you who have read David Ulin’s book The Myth of Solid Ground will recall the strange relationship Ulin explores connecting superstition, faith, folk science, and popular seismology amongst people living in an earthquake zone.

Even more specifically, you might recall a man Ulin mentions who once claimed that, hidden “in the pattern of the L.A freeway system, there is an apparition of a dove whose presence serves to restrain ‘the forces of the San Andreas fault’.”

This is scientifically cringeworthy, to be sure, but it is nonetheless interesting in revealing how contemporary infrastructure can become wrapped up in emergent mythologies of how the world (supposedly) works.

The idea, then, of a rogue seismic abbey quietly established in a remote mountainous region of California “to restrain ‘the forces of the San Andreas Fault’”—which, to be clear, is not the professed purpose of St. Andrew’s Abbey—is an idea worth exploring in more detail, in another medium. Imagine monks, praying every night to keep the rocks below them still, titanic geological forces lulled into a state of quiescent slumber.

[Image: Vasquez Rocks at sunset; photo by BLDGBLOG].

In fact, I lied: at the actual end of the day, Wayne and I split up and I drove back to Los Angeles alone by way of a sunset hike at Vasquez Rocks, a place familiar to Star Trek fans, where rock formations nearly identical to—but also less impressive than—the Devil’s Punchbowl breach the surface of the Earth like dorsal fins. The views, as you’d expect, were spectacular.

Both parks—not to mention St. Andrew’s Abbey—are within easy driving distance of Los Angeles, and both are worth a visit.

Warnings Along the Inundation Line

[Image: Cover from An Incomplete Atlas of Stones by Elise Hunchuck].

After the Tōhoku tsunami in 2011, one of the most ominous details revealed about the coast where it struck, for those of us not familiar with the region, was that a series of warning stones stand there overlooking the sea, carved with sayings such as, “Do not build your homes below this point!

As part of her recent thesis at the Daniels Faculty of Architecture, Landscape, and Design—a school of the University of Toronto—landscape architect Elise Hunchuck spent the summer of 2015 traveling around Japan’s Sanriku coast, documenting every available tsunami stone in photographs, maps, and satellite views, and accumulating seismic and geological data about each stone’s local circumstances.

The end result was a book called An Incomplete Atlas of Stones. It was inspired, she writes, by “a combined interest in warning systems and cartography.”

[Image: From An Incomplete Atlas of Stones by Elise Hunchuck].

“Rising from the earth,” Hunchuck writes in the book’s introduction, “many [of the warning stones] were placed in the landscape to mark either the height of the inundation line or to mark territory above the inundation line.”

They formed a kind of worst-case boundary line for where solid land meets the sea, the known limit of catastrophic inundation.

[Images: Spreads from An Incomplete Atlas of Stones by Elise Hunchuck].

The book introduces each stone taxonomically:

Each tsunami stone is introduced by its geographic coordinates: latitude, longitude, and elevation. Latitude and longitude site each stone on the surface of the earth while elevation situates each stone in relation to the mean level of the sea. The stones are further situated; first, by the boundaries of the village, town, or city they are located within; second, by their administrative prefecture; and, third, their geographical region. As each stone has been erected in response to a major tsunami, both the year and name of the tsunami is listed in addition to the stone’s relation to the inundation line (below the line, on the line, or above the line) of both its target tsunami and the tsunami of 2011. Each stone, at the time of its erection, was engraved with a message. The stones mapped in this atlas may be considered as belonging to one of two categories: as a memorial, commemorating people and places lost to an earthquake tsunami, or as a lesson, providing a description of events and directions as to where to build, where to evacuate to, and where waters have risen in the past.

Each stone or set of stones thus gets a four-page spread, giving the book a nice structural consistency.

[Images: Spreads from An Incomplete Atlas of Stones by Elise Hunchuck].

As you can also see, satellite shots are used to show the landscape at different states in time: one depicts the coastline immediately following the 2011 tsunami, the next then showing the same locatio after up to five years of rebuilding have taken place.

In some of these comparisons, seemingly nothing at all has changed; in others, it appears nearly the entire landscape has been consumed by forests.

[Images: Spreads from An Incomplete Atlas of Stones by Elise Hunchuck].

The entire book is nearly 250 pages in length, and the selections I’ve chosen here barely scratch the surface. The material Hunchuck has gathered would not only be served well by a gallery installation; the project also sets up an interesting formal precedent for other documentary undertakings such as this.

Given my own background, meanwhile—I am a writer, not an architect—I would love to see more of a reporting angle in future versions of this sort of thing, e.g. interviews with local residents, or even with disaster-response workers, connected to these landscapes through personal circumstance.

The narratives of what these stones are and what they mean would be well-illustrated by more than just data, in other words, including verbal expressions of how and why these warnings were heeded (or, for that matter, fatally overlooked).

[Images: Spreads from An Incomplete Atlas of Stones by Elise Hunchuck].

In any case, the title of Hunchuck’s book—it is an incomplete atlas—also reveals that Hunchuck is still investigating what the stones might mean and how, as a landscape architect, she might respond to them. Her goal, she writes, “is not to offer an explicit response—yet. This incomplete atlas shares the stories of seventy five places, each without a definitive beginning or end.”

Along those lines, I’m reminded of a geologist quoted by the New York Times in their own coverage of the megaliths: “We need a modern version of the tsunami stones.”

Stay tuned for Hunchuck’s forthcoming website with more about the project.

(Vaguely related: Boundary Stones and Capital Magic and, to a certain extent, Watermarks.)

Tree Rings and Seismic Swarms

[Image: An otherwise unrelated print of tree rings from Yellowstone National Park, by LintonArt; buy prints here].

The previous post reminded me of an article published in the December 2010 issue of Geology, explaining that spikes in carbon dioxide released by subterranean magma flows beneath Yellowstone National Park have been physically recorded in the rings of trees growing on the ground above.

What’s more, those pulses of carbon dioxide corresponded to seismic events, as the Earth moves and gases are released, with the effect that the trees themselves can thus be studied as archives of ancient seismic activity.

“Plants that grow in areas of strong magmatic CO2 emissions fix carbon that is depleted in [Carbon-14] relative to normal atmosphere, and annual records of emission strength can be preserved in tree rings,” we read. “Yellowstone is a logical target” for a study such as this, the authors continue, “because its swarm seismicity and deformation are often ascribed to buildup and escape of high-pressure magmatic fluids.” The release of gases affects tree growth, which is then reflected in those trees’ rings.

I’ve written before about how tree rings are also archives of solar activity. See this quotation from the book Earth’s Magnetism in the Age of Sail, by A.R.T. Jonkers, for example:

In 1904 a young American named Andrew Ellicott Douglass started to collect tree specimens. He was not seeking a pastime to fill his hours of leisure; his motivation was purely professional. Yet he was not employed by any forestry department or timber company, and he was neither a gardener not a botanist. For decades he continued to amass chunks of wood, all because of a lingering suspicion that a tree’s bark was shielding more than sap and cellulose. He was not interested in termites, or fungal parasites, or extracting new medicine from plants. Douglass was an astronomer, and he was searching for evidence of sunspots.

Slicing open trees, searching for evidence of sunspots. This is a very peculiar—and awesomely poetic—form of astronomy, one locked inside objects all around us.

In the case of the Yellowstone study, a particular seismic swarm, one that hit the region back in 1978, apparently left measurable traces in the wood rhythms of local tree ring growth—in other words, surface-dwelling organisms in the Park were found to bear witness, in their very structure, to shifts occurring much deeper in the planet they live upon. They are measuring sticks of subterranea.

Combine this, then, with Andrew Ellicott Douglass’s work, and you’ve got tree rings as strange indicators of worlds hidden both below and far away: scarred by subterranean plumes of asphyxiating gas and marked by the variable burning of nearby stars. They are telescopes and seismometers in one, tools through which shifts in the sun and in the Earth’s own structure can be painstakingly divined.

Shocked to discover “they were living in ‘hill country’”

MysteriousUpswelling[Image: “Mysterious upswelling of Opp street above curb, Wilmington (1946),” courtesy USC Libraries].

In 1946, a “mysterious upswelling” occurred in a street in the neighborhood of Wilmington, California, near Long Beach. The photograph above, courtesy of the USC Libraries, pictures a young boy who went outside to measure it.

As part of an irregular series of short posts for KCET’s Lost L.A.—about things like Los Angeles partially illuminated by the light of an atomic bomb—I wrote a quick piece, inspired both by the photo itself and by its caption. “Surprising uprising,” it begins. “George Applegate measures mysterious swelling of Opp Street in Wilmington. Residents were shocked yesterday morning to discover they were living in ‘hill country.’ Street is seven inches above the curbing. Officials are investigating.”

Although I don’t mention this in the KCET post, I was instantly reminded of terrain deformation grenades and the instant, pop-up landforms of an old LucasArts game called Fracture. There, specialized weapons are put to use, tactically reshaping the earth’s surface, resulting in “mysterious upswellings” such as these.

There could be hills anywhere in Los Angeles, we might infer from this, lying in wait beneath our streets and sidewalks, prepping themselves for imminent exposure,” I write over at KCET. “A street today is a mountain tomorrow.”

(Also related: The previous post, Inland Sea).

Inland Sea

For two closely related projects—one called L.A.T.B.D., produced for the USC Libraries, and the other called L.A. Recalculated, commissioned by the 2015 Chicago Architecture Biennial, both designed with Smout Allen—I wrote that Los Angeles could be approached bathymetrically.

Los Angeles is “less a city, in some ways, than it is a matrix of seismic equipment and geological survey tools used for locating, mapping, and mitigating the effects of tectonic faults. This permanent flux and lack of anchorage means that studying Los Angeles is more bathymetric, we suggest, than it is terrestrial; it is oceanic rather than grounded.”

pendulums
[Image: Underground seismic counterweights act as pendulums, designed to stabilize Los Angeles from below; from L.A. Recalculated by Smout Allen and BLDGBLOG].

Because of seismic instability, in other words, the city should be thought of in terms of depths and soundings, not as a horizontal urban surface but as a volumetric space churning with underground forces analogous to currents and tides.

This bathymetric approach to dry land came to mind again when reading last month that the land of Southern California, as shown by a recent GPS study, is undergoing “constant large-scale motion.”

It is more like a slow ocean than it is solid ground, torqued and agitating almost imperceptibly in real-time.

“Constant large-scale motion has been detected at the San Andreas Fault System in Southern California,” we read, “confirming movement previously predicted by models—but never before documented. The discovery will help researchers better understand the fault system, and its potential to produce the next big earthquake.”

fault
[Image: “Vertical velocities” along the San Andreas Fault; via Nature Geoscience].

This is true, of course, on a near-planetary scale, as plate tectonics are constantly pushing land masses into and away from one another like the slow and jagged shapes of an ice floe.

But the constant roiling motion of something meant to be solid is both scientifically fascinating and metaphorically rich—eliminating the very idea of being grounded or standing on firm ground—not to mention conceptually intriguing when put into the context of architectural design.

That is, if architecture is the design and fabrication of stationary structures, meant to be founded on solid ground, then this “constant large-scale motion” suggests that we should instead think of architecture, at least by analogy, more in terms of shipbuilding or even robotics. Architecture can thus be given an altogether different philosophical meaning, as a point of temporary orientation and solidity in a world of constant large-scale surges and flux.

Put another way, the ground we rely on has never been solid; it has always been an ocean, its motion too slow to perceive.

(Thanks to Wayne Chambliss for the tip).

Curbed

10-HaywardCornerWEB[Image: Photo by Geoff Manaugh].

Lacking any sort of seismically-themed historic preservation plan, this seemed all but inevitable: a city works crew has fixed, and thus destroyed, the amazing offset curb at the intersection of Rose and Prospect in Hayward, California, where seismic “creep” has been inadvertently tracked for decades.

From the L.A. Times:

Since at least the 1970s, scientists have painstakingly photographed the curb as the Hayward fault pushed it farther and farther out of alignment. It was a sharp reminder that someday, a magnitude 7 earthquake would strike directly beneath one of the most heavily populated areas in Northern California.
Then, one early June day, a city crew decided to fix the faulty curb—pun intended. By doing what cities are supposed to do—fixing streets—the city’s action stunned scientists, who said a wonderful curbside laboratory for studying earthquakes was destroyed.

As you can see here, small black lines had been drawn on the curb as a visual aid for helping measure exactly how far its opposing sides had been displaced by so-called “fault creep.”

11-HaywardCornerWEB[Image: Photo by Geoff Manaugh].

The curb on the west is moving north—along with the rest of that part of Hayward, California—while the curb on the east basically marks the edge of a different tectonic plate.

I was there roughly two years ago, looking at fault creep up and down California—primarily along the San Andreas Fault—when I took these shots; at the time, I wrote that the intersection could be thought of as “something like an alternative orientation point for the city, a kind of seismic meridian—or perhaps doomsday clock—by which Hayward’s ceaseless cleaving can be measured.”

CurbsTwoWEBCurbsWEB[Images: Photos by Geoff Manaugh].

Alas, we’ll have to wait presumably until the 2050s before the curbs offset to anything like they were when these photographs were taken.

(Thanks to Wayne Chambliss for the heads up!)

L.A. Recalculated

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

London-based architects Smout Allen and I have a project in the new issue of MAS Context, work originally commissioned for the 2015 Chicago Architecture Biennial and closely related to our project, L.A.T.B.D., at the University of Southern California Libraries.

Called L.A. Recalculated, the project looks at Greater Los Angeles as a seismically active and heavily urbanized terrain punctuated by large-scale scientific instrumentation, from geophysics to astronomy. This is explained in more detail, below.

Between the drawings and the text, it’s something I’ve been very enthusiastic about for the past year or so, and I’m thrilled to finally see it published. I thus thought I’d include it here on the blog; a slightly edited version of the project as seen on MAS Context appears below.

L.A. Recalculated
Commissioned for the 2015 Chicago Architecture Biennial

Los Angeles is a city where natural history, aerospace research, astronomical observation, and the planetary sciences hold outsized urban influence. From the risk of catastrophic earthquakes to the region’s still operational oil fields, from its long history of military aviation to its complex relationship with migratory wildlife, Los Angeles is not just a twenty-first-century megacity.

Its ecological fragility combined with an unsettling lack of terrestrial stability mean that Los Angeles requires continual monitoring and study: from its buried creeks to its mountain summits, L.A. has been ornamented with scientific equipment, crowned with electromagnetic antennae, and ringed with seismic stations, transforming Los Angeles into an urban-scale research facility, a living device inhabited by millions of people on the continent’s westernmost edge.

[Image: Models from the related project, L.A.T.B.D., by Smout Allen and BLDGBLOG; photo courtesy Stonehouse Photographic].

L.A. Recalculated can be seen as a distributed cartographic drawing—part map, part plan, part section—that takes conceptual inspiration from the book OneFiveFour by Lebbeus Woods. There, Woods describes a hypothetical city shaped by the existential threat of mysterious seismic events surging through the ground below. In order to understand how this unstable ground might undermine the metropolis, the city has augmented itself on nearly every surface with “oscilloscopes, refractors, seismometers, interferometers, and other, as yet unknown instruments,” he writes, “measuring light, movement, force, change.”

In this city of instruments—this city as instrument—“tools for extending perceptivity to all scales of nature are built spontaneously, playfully, experimentally, continuously modified in home laboratories, in laboratories that are homes,” exploring the moving surface of an Earth in flux. Architecture becomes a means for giving shape to these existential investigations.

Twenty-first-century Los Angeles has inadvertently fulfilled Woods’s speculative vision. It is less a city, in some ways, than it is a matrix of seismic equipment and geological survey tools used for locating, mapping, and mitigating the effects of tectonic faults. This permanent flux and lack of anchorage means that studying Los Angeles is more bathymetric, we suggest, than it is terrestrial; it is oceanic rather than grounded.

[Image: Models from the related project, L.A.T.B.D., by Smout Allen and BLDGBLOG; photo courtesy Stonehouse Photographic].

L.A. is also a graveyard of dead rocket yards and remnant physics experiments that once measured and established the speed of light using prisms, mirrors, and interferometers in the San Gabriel Mountains (an experiment now marked by historic plaques and concrete obelisks). Further, Los Angeles hosts both the Griffith and Mt. Wilson Observatories through which the region achieved an often overlooked but vital role in the history of global astronomy.

Seen through the lens of this expanded context, Los Angeles becomes an archipelago of scientific instruments often realized at the scale of urban infrastructure: densely inhabited, with one eye on the stars, sliding out of alignment with itself, and jostled from below with seismic tides.

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—ONE—
The surface of Los Angeles is both active and porous. A constant upwelling of liquid hydrocarbons and methane gas is everywhere met with technologies of capture, mitigation, and control. In our proposal, wheeled seismic creepmeters measure the movement of the Earth as part of an experimental lab monitoring potentially hazardous leaks of oil and tar underground.

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—TWO—
The speed of light was accurately measured for the first time just outside this city of sunshine and cinema. Using complex scientific instrumentation assembled from rotating hexagonal prisms, mirrors, and pulses of light, housed inside small, architecturally insignificant shacks in the mountains behind Los Angeles, one of the fundamental constants of the universe was cracked.

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—THREE—
In the heart of the city, atop the old neighborhoods of Chavez Ravine, erased to make way for Dodger Stadium, we propose a series of 360º planetariums to be built. These spherical projections not only reconnect Los Angeles with the stars, constellations, and distant galaxies turning through a firmament its residents can now rarely see; they also allow simulated glimpses into the Earth’s interior, where the planet’s constantly rearranging tectonic plates promise a new landscape to come, a deeper world always in formation. The destroyed houses and streets of this lost neighborhood also reappear in the planetarium shows as a horizon line to remind visitors of the city’s recent past and possible future.

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—FOUR—
As the city changes—its demography variable, its landscape forever on the move—so, too, do the constellations high above. These shifting heavens allow for an always-new celestial backdrop to take hold and influence the city. A complex architectural zodiac is developed to give a new narrative context for these emerging astral patterns.

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—FIVE—
Seismic counterweights have long been used to help stabilize skyscrapers in earthquake zones. Usually found at the tops of towers, these dead weights sway back and forth during temblors like vast and silent bells. Here, a field of subterranean pendulums has been affixed beneath the city to sway—and counter-sway—with every quake, a kind of seismic anti-doomsday clock protecting the city from destruction.

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—SIX—
All of the oil, tar, and liquid asphalt seeping up through the surface of the city can be captured. In this image, slow fountains attuned to these percolating ground fluids gather and mix the deeper chemistry of Los Angeles in special pools and reservoirs.

[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—SEVEN—
The endless jostling of the city, whether due to tectonic activity or to L.A.’s relentless cycles of demolition and construction, can be tapped as a new source of renewable energy. Vast flywheels convert seismic disturbance into future power, spinning beneath generation facilities built throughout the city’s sprawl. Los Angeles will draw power from the terrestrial events that once threatened it.

28_la_recalculated_08[Image: From L.A. Recalculated by Smout Allen and BLDGBLOG].

—EIGHT—
Through sites such as Griffith Observatory and the telescopes of Mt. Wilson, the history of Los Angeles is intimately connected to the rise of modern astronomy. The city’s widely maligned landscape of freeways and parking lots has been reinvigorated through the precise installation of gates, frames, and other architectural horizon lines, aligning the city with solstices, stars, and future constellations.

• • •

L.A. Recalculated was commissioned by the 2015 Chicago Architecture Biennial, with additional support from the USC Libraries Discovery Fellowship, the Bartlett School of Architecture, UCL, and the British Council. Special thanks to Sandra Youkhana, Harry Grocott, and Doug Miller.

Meanwhile, check out the closely related project, L.A.T.B.D.. Broadly speaking, L.A.T.B.D. consists of—among many other elements, including narrative fiction and elements of game design—3D models of the architectural scenarios described by L.A. Recalculated.

The Town That Creep Built

[Image: A curb in Hayward reveals how much the ground is drifting due to “fault creep”: the red-painted part is slowly, but relentlessly, moving north. Photo by Geoff Manaugh].

South of San Francisco, a whole town is being deformed by plate tectonics. These are the slow but relentless landscape effects known as “fault creep.”

An earlier version of this post was first published on The Daily Beast.

The signs that something’s not right aren’t immediately obvious, but, once you see them, they’re hard to tune out.

Curbs at nearly the exact same spot on opposite sides of the street are popped out of alignment. Houses too young to show this level of wear stand oddly warped, torqued out of synch with their own foundations, their once strong frames off-kilter. The double yellow lines guiding traffic down a busy street suddenly bulge northward—as if the printing crew came to work drunk that day—before snapping back to their proper place a few feet later.

This is Hollister, California, a town being broken in two slowly, relentlessly, and in real time by an effect known as “fault creep.” A surreal tide of deformation has appeared throughout the city.

[Image: “Fault creep” bends the curbs in Hollister; photo by Geoff Manaugh].

As if its grid of streets and single-family homes was actually built on an ice floe, the entire west half of Hollister is moving north along the Calaveras Fault, leaving its eastern streets behind.

In some cases, doors no longer fully close and many windows now open only at the risk of getting stuck (some no longer really close at all).

Walking through the center of town near Dunne Park offers keen observers a hidden funfair of skewed geometry.

[Image: 359 Locust Avenue, Hollister; photo by Geoff Manaugh].

For example, go to the house at 359 Locust Avenue.

The house itself stands on a different side of the Calaveras Fault than its own front walkway. As if trapped on a slow conveyor built sliding beneath the street, the walk is being pulled inexorably north, with the effect that the path is now nearly two feet off-center from the porch it still (for the time being) leads to.

[Image: The walkway is slowly creeping north, no longer centered with the house it leads to; photo by Geoff Manaugh].

In another generation, if it’s not fixed, this front path will be utterly useless, leading visitors straight into a pillar.

Or walk past the cute Victorian on 5th Street. Strangely askew, it seems frozen at the start of an unexpected metamorphosis.

[Image: Photo by Geoff Manaugh].

Geometrically, it’s a cube being forced to become a rhomboid by the movements of the fault it was unknowingly built upon, an architectural dervish interrupted before it could complete its first whirl.

Now look down at your feet at the ridged crack spreading through the asphalt behind you, perfectly aligned with the broken curbs and twisted homes on either side.

This is the actual Calaveras Fault, a slow shockwave of distortion forcing its way through town, bringing architectural mutation along with it.

[Images: The Calaveras Fault pushes its way through Hollister; photos by Geoff Manaugh].

The ceaseless geometric tumult roiling just beneath the surface of Hollister brings to mind the New Orleans of John McPhee, as described in his legendary piece for The New Yorker, “Atchafalaya.”

There, too, the ground is active and constantly shifting—only, in New Orleans, it’s not north or south. It’s up or down. The ground, McPhee explains, is subsiding.

“Many houses are built on slabs that firmly rest on pilings,” he writes. “As the turf around a house gradually subsides, the slab seems to rise.” This leads to the surreal appearance of carnivalesque spatial side-effects, with houses entirely detached from their own front porches and stairways now leading to nowhere:

Where the driveway was once flush with the floor of the carport, a bump appears. The front walk sags like a hammock. The sidewalk sags. The bump up to the carport, growing, becomes high enough to knock the front wheels out of alignment. Sakrete appears, like putty beside a windowpane, to ease the bump. The property sinks another foot. The house stays where it is, on its slab and pilings. A ramp is built to get the car into the carport. The ramp rises three feet. But the yard, before long, has subsided four. The carport becomes a porch, with hanging plants and steep wooden steps. A carport that is not firmly anchored may dangle from the side of a house like a third of a drop-leaf table. Under the house, daylight appears. You can see under the slab and out the other side. More landfill or more concrete is packed around the edges to hide the ugly scene.

Like McPhee’s New Orleans, Hollister is an inhabitable catalog of misalignment and disorientation, bulging, bending, and blistering as it splits right down the middle.

And there’s more. Stop at the north end of 6th Street, for example, just across from Dunne Park, and look back at the half-collapsed retaining wall hanging on for dear life in front of number 558.

It looks like someone once backed a truck into it—but it’s just evidence of plate tectonics, the ground bulging northward without regard for bricks or concrete.

[Images: A fault-buckled wall and sidewalk bearing traces of planetary forces below; photos by Geoff Manaugh].

In fact, follow this north on Google Maps and you’ll find a clean line connecting this broken wall to the jagged rupture crossing the street in the photographs above, to the paper-thin fault dividing the house from its own front walk on Locust Avenue.

So what’s happening to Hollister?

“Fault creep” is a condition that results when the underlying geology is too soft to get stuck or to accumulate tectonic stress: in other words, the deep rocks beneath Hollister are slippery, more pliable, and behave a bit like talc. Wonderfully but unsurprisingly, the mechanism used to study creep is called a creepmeter.

The ground sort of oozes past itself, in other words, a slow-motion landslide at a pace that would be all but imperceptible if it weren’t for the gridded streets and property lines being bent out of shape above it.

[Image: A curb and street drain popped far out of alignment in Hollister; photo by Geoff Manaugh].

In a sense, Hollister is an urban-scale device for tracking tectonic deformation: attach rulers to its porches and curbs, and you could even take measurements.

The good news is that the large and damaging earthquakes otherwise associated with fault movement—when the ground suddenly breaks free every hundred years or so in a catastrophic surge—are not nearly as common here.

Instead, half a town can move north by more than an inch every five years and all that most residents will ever feel is an occasional flutter.

[Images: Crossing onto the Pacific Plate (heading west) in Parkfield; photo by Geoff Manaugh].

I spoke with Andy Snyder from the U.S. Geological Survey about the phenomenon.

Snyder works on an experiment known as the San Andreas Fault Observatory at Depth, or SAFOD, which has actually drilled down through the San Andreas Fault to monitor what’s really happening down there, studying the landscape from below through sensitive probes installed deep in the active scar tissue between tectonic plates.

On Snyder’s advice, I made my way out to one of the greatest but most thoroughly mundane monuments to fault creep in the state of California. This was in Parkfield, a remote town with a stated population of 18 where Snyder and SAFOD are both based, and where fault creep is particularly active.

In Parkfield there is a remarkable road bridge: a steel structure that has been anchored to either side of the San Andreas Fault like a giant, doomed staple. Anyone who crosses it in either direction is welcomed onto a new tectonic plate by friendly road signs—but the bridge itself is curiously bent, warped like a bow as its western anchorage moves north toward San Francisco.

It distorts more and more every day of the month, every year, due to the slow effects of fault creep. Built straight, it is already becoming a graceful curve.

[Image: Looking east at the North American Plate in Parkfield; photos by Geoff Manaugh].

Parkfield is also approximately where fault creep begins in the state, Snyder explained, marking the southern edge of a zone of tectonic mobility that extends up roughly to Hollister and then begins again on a brief stretch of the Hayward Fault in the East Bay.

Indeed, another suggestion of Snyder’s was that I go up to visit a very specific corner in the city of Hayward, where the curb at the intersection of Rose and Prospect Streets has long since been shifted out of alignment.

Over the past decade—most recently, in 2011—someone has actually been drawing little black arrows on the concrete to help visualize how far the city has drifted in that time.

The result is something like an alternative orientation point for the city, a kind of seismic meridian—or perhaps doomsday clock—by which Hayward’s ceaseless cleaving can be measured.

[Images: A moving curb becomes an inadvertent compass for measuring seismic energy in Hayward; photos by Geoff Manaugh].

Attempting to visualize earthquakes on a thousand-year time span, or to imagine the pure abstraction of seismic energy, can be rather daunting; this makes it all the more surprising to realize that even the tiniest details hidden in plain sight, such as cracks in the sidewalk, black sharpie marks on curbs, or lazily tilting front porches, can actually be real-time evidence that California is on the move.

But it is exactly these types of signs that function as minor landmarks for the seismic tourist—and, for all their near-invisibility, visiting them can still provide a mind-altering experience.

Back in Hollister, Snyder warned, many of these already easily missed signs through which fault creep is made visible are becoming more and more hard to find.

The town is rapidly gentrifying, he pointed out, and Hollister’s population is beginning to grow as its quiet and leafy streets fill up with commuters who can no longer afford to live closer to Silicon Valley or the Bay. This means that the city’s residents are now just a bit faster to repair things, just a bit quicker to tear down structurally unsound houses.

One of the most famous examples of fault creep, for example—a twisted and misshapen home formerly leaning every which way at a bend in Locust Avenue—is gone. But whatever replaces it will face the same fate.

After all, the creep is still there, like a poltergeist disfiguring things from below, a malign spirit struggling to make itself visible.

Beneath the painted eaves and the wheels of new BMWs, the landscape is still on the move; the deformation is just well hidden, a denied monstrosity reappearing millimeter by millimeter despite the quick satisfaction of weekend repair jobs. Tumid and unstoppable, there is little that new wallpaper or re-poured driveways can do to disguise it.

[Image: Haphazard concrete patchwork in a formerly straight sidewalk betrays the slow action of fault creep; photo by Geoff Manaugh].

Snyder remembered one more site in Hollister that he urged me to visit on my way out of town.

In the very center of Hollister’s Dunne Park, a nice and gentle swale “like a chaise longue,” in his words, has been developing.

Expecting to find just a small bump running through the park, I was instead surprised to see that there is actually a rather large grassy knoll forming there, a rolling and bucolic hill that few people would otherwise realize is an active tectonic fault.

[Image: A fault-caused grassy knoll rises in the center of Dunne Park in Hollister; photo by Geoff Manaugh].

In fact, he said, residents have been entirely unperturbed by this mysterious appearance of a brand new landform in the middle of their city, seeing it instead as an opportunity for better sunbathing. Fault creep is not without its benefits, he joked.

Snyder laughed as he described the sight of a dozen people and their beach towels, all angling themselves upward toward the sun, getting tan in a mobile city with the help of plate tectonics.

[Note: An earlier version of this piece was first published on The Daily Beast (where I did not choose the original headline). I owe a huge thanks to Andy Snyder for the phone conversation in which we discussed fault creep; and the book Finding Fault in California: An Earthquake Tourist’s Guide by Susan Elizabeth Hough was also extremely useful. Finally, please also note that, if you do go to Hollister or Hayward to photograph these sites, be mindful of the people who actually live there, as they do not necessarily want crowds of strangers gathering outside their homes].