Mass Effect

[Image: The weight of a human being; courtesy U.S. Library of Congress].

Over at the consistently interesting Anthropocene Review, a group of geologists and urbanists have teamed up to calculate the total mass of all technical objects—from handheld gadgetry to agricultural equipment, from domesticated forests to architectural megastructures—produced by contemporary humanity.

[Image: Courtesy U.S. Library of Congress].

Their seemingly impossible goal was to gauge “the scale and extent of the physical technosphere,” where they define the technosphere “as the summed material output of the contemporary human enterprise. It includes active urban, agricultural and marine components, used to sustain energy and material flow for current human life, and a growing residue layer, currently only in small part recycled back into the active component.”

The active technosphere is made up of buildings, roads, energy supply structures, all tools, machines and consumer goods that are currently in use or useable, together with farmlands and managed forests on land, the trawler scours and other excavations of the seafloor in the oceans, and so on. It is highly diverse in structure, with novel inanimate components including new minerals and materials, and a living part that includes crop plants and domesticated animals.

Their “preliminary” calculations of all this suggest a mass of 30 trillion tons.

[Image: Interior of Hughes Aircraft Company cargo building, courtesy U.S. Library of Congress].

The authors immediately put this number into a darkly awe-inspiring perspective:

If assessed on palaeontological criteria, technofossil diversity already exceeds known estimates of biological diversity as measured by richness, far exceeds recognized fossil diversity, and may exceed total biological diversity through Earth’s history. The rapid transformation of much of Earth’s surface mass into the technosphere and its myriad components underscores the novelty of the current planetary transformation.

This “rapid transformation of much of Earth’s surface mass into the technosphere” means that we are turning the planet into technical objects, dismantling and recombining matter on a planetary scale. The idea that the results of this ongoing experiment “may exceed total biological diversity through Earth’s history” is sobering, to say the least.

Read the rest of the article over at The Anthropocene Review.

(Originally spotted via Chris Rowan).

Atlas of the Underworld

[Image: Via Science].

A “complete x-ray of Earth’s interior is coming into focus,” Science reported last week. Using computerized tomography, or CT scanning—the same technology used to visualize the interior of the human body for various medical diagnoses—Dutch Earth scientists are piecing together what they call an “Atlas of the Underworld.” They are documenting invisible landscape features—the ghostly remains of entire continents—hidden inside the planet, locked beneath the surface we dwell upon everyday.

Awesomely, these features include “oceans and mountains lost to Earth’s history,” we read, an Earth’s surface within the Earth’s surface:

The reconstructions are also resurrecting mountains that had been lost to time. For example, in a study published several months ago, [tectonicists Jonny Wu and John Suppe] reconstructed the travels of 28 slabs to recreate the Philippine Sea as it was more than 50 million years ago. Beyond identifying what appears to be a previously unknown piece of ocean crust, they predicted that as one of their paleoplates plunged into the mantle, it threw up a large chain of volcanoes that eventually collided with Asia. That convulsive process could explain mysterious folded rocks in Japan and beneath the East China Sea.

For now, however, these “lost mountains” remain digital projections based on available data, not real, physical discoveries. They are, we might say, tectonic fictions, unverified models of past Earths inside our own.

A researcher at the University of Oslo named Grace Shephard points out, for example, that she will soon “publish a comparison of 14 different models that will assess which slabs seem most likely to be real” (emphasis added).

[Image: The long-buried Farallon Plate, visible nowhere on the Earth’s surface—or, rather, only visible through its indirect, mountain-building effects; courtesy Karin Sigloch].

Twenty years ago, poet Gary Snyder published a book called Mountains and Rivers Without End. As the Freer and Sackler Galleries describe it, the book is an “epic celebration of nature and humanity that encompasses Asian artistic traditions, Native American storytelling, and Zen Buddhist philosophy,” all in the guise of a book of landscape poetry.

I mention this not because Snyder’s book is the only example of such a thing, but because it’s interesting to imagine a tomographic expansion of Snyder’s “mountains and rivers without end”—adding revelatory geophysics and otherworldly Earth-scanning technology to the book’s already eclectic mix of myths and texts.

In other words, where is the poetry of lost ghost continents, buried mountain ranges, drowned ocean basins, landlocked archipelagoes, melting thousands of miles beneath our feet, swirling slowly below us in the Earth’s deep interior?

(Thanks to Wayne Chambliss for the tip!)

“Today’s world has no equivalent”

[Image: Tromsø, Norway; photo by BLDGBLOG].

Ted Nield’s book Supercontinent: Ten Billion Years in the Life of Our Planet—previously discussed back in 2012—is an exercise in what has long been referred to here as landscape futures.

In Nield’s case, this means literally imagining what the surface of the Earth might look like after hundreds of millions of years’ worth of tectonic transformations have deformed it beyond all recognition. Supercontinent could thus be read alongside Jan Zalasiewiez’s The Earth After Us as a useful guide for thinking about radical landscape change on a truly inhuman timescale.

Nield writes, for example, that, “even if some civilization of 200 million years ago had completely covered [the Earth] in cities and then wiped itself out in some gigantic global nuclear holocaust, nothing—not even the faintest trace of some unnatural radioisotope—would now remain on the surface.” Some of us might think that writing books, for example, is a way to achieve immortality—or winning an Oscar or becoming a national leader—yet covering the entire planet with roads and buildings is still not enough to guarantee a place in any sort of collective future memory. Everything will be erased.

The book goes from a speculative, but apparently realistic, scenario in which subduction zones might open in the Caribbean—thus dragging North America back toward a seemingly inexorable collision with Eurasia—to the future implications of past tectonic activity. Supercontinents have come and gone, Nield reminds us, and the cycle of these mega-islands is “the grandest of all the patterns in nature.” “750 million years before Pangaea formed,” he writes, “yet another [supercontinent] broke up; and before that another, and so on and on, back into the almost indecipherable past.”

At one point, Nield asks, “what of older supercontinents? What of the supercontinent that broke up to give us Pangaea? And the one before that? Compared with Pangaea, those lost worlds seem truly lost. As with all geological evidence, the older it is, the less of it survives, the more mangled it has become and the harder it is to interpret.”

It is all but impossible to picture them—to see oneself standing on them—as you can with Pangaea. They have their magical names, which lend them reality of a sort despite the fact that, for some, even their very existence remains controversial. About Rodinia, Pannotia, Columbia, Atlantica, Nena, Arctica or distant Ur, the mists of time gather ever more thickly.

The amazing thing is that this cycle will continue: long after North America is expected to reunite with Eurasia, which itself will have collided with North Africa, there will be yet another splintering, following more rifts, more bays and inland seas, in ever-more complicated rearrangements of the Earth’s surface, breeding mountain ranges and exotic island chains. And so on and so on, for billions of years. Bizarre new animals will evolve and bacteria will continue to inter-speciate—and humans will long since have disappeared from the world, unable to experience or see any of these future transformations.

While describing some of the potential ecosystems and landscapes that might result from these tectonic shifts, Nield writes that “our knowledge of what is normal behavior for the Earth is extremely limited.”

Indeed, he suggests, the present is not a key to the past: geologists have found “that there were things in the deepest places of Earth history for the unlocking of whose secrets the present no longer provided the key.” These are known as “no-analog” landscapes.

That is, what we’re experiencing right now on Earth potentially bears little or no resemblance to the planet’s deep past or far future. The Earth itself has been, and will be again, unearthly.

[Image: Oulanka National Park, Finland; photo by Peter Essick, courtesy of the University of Missouri].

In any case, I mention all this because of a quick description found roughly two-fifths of the way through Nield’s book where he discusses lost ecosystems—landscapes that once existed here but that no longer have the conditions to survive.

Those included strange forests that, because of the inclination of the Earth’s axis, grew in almost permanent darkness at the south pole. “These forests of the polar night,” Nield explains, describing an ancient landscape in the present tense, “withstand two seasons: one of feeble light and one of unremitting dark. Today’s world has no equivalent of this eerie ecosystem. Their growth rings show that each summer these trees grow frenetically. Those nearer the coast are lashed by megamonsoon rains roaring in from [the lost continent] of Tethys, the thick cloud further weakening the feeble sunshine raking the latitudes at the bottom of the world.”

There is something so incredibly haunting in this image, of thick forests growing at the bottom of the world in a state of “unremitting” darkness, often lit only by the frozen light of stars, swaying now and again with hurricane-force winds that have blown in from an island-continent that, today, no longer exists.

Whatever “novel climates” and unimaginable geographies lie ahead for the Earth, it will be a shame not to see them.

(Related: Ghosts of Planets Past: An Interview with Ron Blakey).

“We’re opening up the solar system”

[Image: Cropped Apollo mission panorama, courtesy Lunar and Planetary Institute, via @Rainmaker1973; view full].

Some lunar news: “The first company to apply for a commercial space mission beyond Earth orbit has just received approval from the federal government,” Ars Technica reports. “As part of the Google Lunar X Prize competition, Moon Express intends to launch a small, single-stage spacecraft to land on the Moon by the end of 2017.”

“We’re opening up the solar system,” company co-founder Bob Richards says, with at least some degree of over-statement.

As the Wall Street Journal suggested back in June, the mission could prove to be merely “the first in an array of for-profit ventures throughout the solar system,” and it is “expected to set important legal and diplomatic precedents for how Washington will ensure such nongovernmental projects comply with longstanding international space treaties.”

There will be a lot to watch for in the next few years, in other words, including the archaeological implications of these missions.

On a vaguely related note, the company’s other cofounder is Naveen Jain, who has what sounds like a pretty amazing private meteorite collection.

Global Positioning Shift

australia[Image: Australia, rendered by Neema Mostafavi for NASA].

Australia, it turns out, is not quite where maps think it is. Thanks to plate tectonics, the island nation is moving north by 1.5 centimeters a year, which means that the entire country is now nearly five feet further north than existing cartography suggests it should be.

As a result, Australia’s lat/long coordinates are going “to shift,” the BBC reports.

Interestingly, “the body responsible for the change said it would help the development of self-driving cars, which need accurate location data to navigate.” In other words, the navigational capabilities of autonomous vehicles and other self-driving robots are, at least indirectly, affected by plate tectonics—by the ground literally moving beneath their wheels.

“If the lines [of latitude and longitude] are fixed, you can put a mark in the ground, measure its co-ordinate, and it will be the same co-ordinate in 20 years,” explained Dan Jaksa of Geoscience Australia. “It’s the classical way of doing it.”
Because of the movement of the Earth’s tectonic plates, these local co-ordinates drift apart from the Earth’s global co-ordinates over time.
“If you want to start using driverless cars, accurate map information is fundamental,” said Mr Jaksa.
“We have tractors in Australia starting to go around farms without a driver, and if the information about the farm doesn’t line up with the co-ordinates coming out of the navigation system there will be problems.”

Put another way, gaps have been opening up between the world of robotic navigation and the actual, physical barriers those machines seek to navigate.

You could perhaps argue that there is our Australia—that is, a human Australia of streets, walls, and buildings—and then there is the machines’ Australia, a parallel yet intersecting world of skewed reference points and offset walls, a kind of ghost nation, inhabited only by robots, departing further and further from the limits of human geographic experience every day.

[Image: Via the Australian Intergovernmental Committee on Surveying and Mapping].

Of course, this would not be the first time that the accuracy of geographic information has a measurable effect on precision agriculture. However, it is also not the first time that geographers have realized that they don’t know precisely where a country really is.

In his recent book about GPS, Pinpoint, author Greg Milner writes about “the geopolitical importance of geodesy,” or the study of the Earth’s exact geometric shape (it is an “oblate spheroid”).

“The geopolitical significance of geodesy increased with the onset of the Cold War,” Milner writes. “In a very real sense, the West did not know the exact location of the USSR”—and, thus, did not know exactly how or where to target its missiles. “‘Missiles were the big drivers in getting the datums tied down,’ Gaylord Green remembers. ‘If I wanted to hit a target in Russia, I couldn’t hit squat if I didn’t have their datum tied down to mine.’”

Briefly, it’s worth pointing out a fascinating side-note from Milner’s book: “The trajectory a missile follows is influenced by the gravity field where it is launched, and its aim can be disrupted by the gravity at the target, so countries often kept their gravity data classified.” I love the John le Carré-like implications of classified gravity data, including what it might take to smuggle such info out of an enemy nation.

But let’s go back to the missile thing: in addition to the question of how farm equipment and other self-driving vehicles can successfully navigate the landscape when they don’t, in fact, have the correct terrestrial coordinates, Australia’s strange misplacement on global maps implies that every potential military target in the country would also have been roughly five feet away from where existing charts say they are.

An old, uncorrected missile system in a decaying military base somewhere mistakenly fires sixty years from now, rockets off toward Australia… and plummets into the sea, missing its coastal target by several feet. Plate tectonics as a slow national defense mechanism.

Read more at the BBC.

Inland Sea

For two closely related projects—one called L.A.T.B.D., produced for the USC Libraries, and the other called L.A. Recalculated, commissioned by the 2015 Chicago Architecture Biennial, both designed with Smout Allen—I wrote that Los Angeles could be approached bathymetrically.

Los Angeles is “less a city, in some ways, than it is a matrix of seismic equipment and geological survey tools used for locating, mapping, and mitigating the effects of tectonic faults. This permanent flux and lack of anchorage means that studying Los Angeles is more bathymetric, we suggest, than it is terrestrial; it is oceanic rather than grounded.”

[Image: Underground seismic counterweights act as pendulums, designed to stabilize Los Angeles from below; from L.A. Recalculated by Smout Allen and BLDGBLOG].

Because of seismic instability, in other words, the city should be thought of in terms of depths and soundings, not as a horizontal urban surface but as a volumetric space churning with underground forces analogous to currents and tides.

This bathymetric approach to dry land came to mind again when reading last month that the land of Southern California, as shown by a recent GPS study, is undergoing “constant large-scale motion.”

It is more like a slow ocean than it is solid ground, torqued and agitating almost imperceptibly in real-time.

“Constant large-scale motion has been detected at the San Andreas Fault System in Southern California,” we read, “confirming movement previously predicted by models—but never before documented. The discovery will help researchers better understand the fault system, and its potential to produce the next big earthquake.”

[Image: “Vertical velocities” along the San Andreas Fault; via Nature Geoscience].

This is true, of course, on a near-planetary scale, as plate tectonics are constantly pushing land masses into and away from one another like the slow and jagged shapes of an ice floe.

But the constant roiling motion of something meant to be solid is both scientifically fascinating and metaphorically rich—eliminating the very idea of being grounded or standing on firm ground—not to mention conceptually intriguing when put into the context of architectural design.

That is, if architecture is the design and fabrication of stationary structures, meant to be founded on solid ground, then this “constant large-scale motion” suggests that we should instead think of architecture, at least by analogy, more in terms of shipbuilding or even robotics. Architecture can thus be given an altogether different philosophical meaning, as a point of temporary orientation and solidity in a world of constant large-scale surges and flux.

Put another way, the ground we rely on has never been solid; it has always been an ocean, its motion too slow to perceive.

(Thanks to Wayne Chambliss for the tip).

Supergrass, or the Anthropocene is Local

[Image: Artificial grass stretches onto a sidewalk in Somerville, MA; Instagram by BLDGBLOG].

While reading that “land use has already pushed biodiversity below the level proposed as a safe limit,” possibly setting the stage for an irreversible decline in biological variety around the world, it’s worth recalling a somewhat tragicomic article published last week warning that Britain has so many artificial lawns, these so-called permanent botanicals are now considered a threat to wildlife.

From the Guardian:

From local authorities who purchase in bulk for use in street scaping, to primary schools for children’s play areas and in the gardens of ordinary suburban family homes, the sight of pristine, green artificial grass is becoming a familiar sight. One company has registered a 220% year-on-year increase in trade of the lawns.
But as families, councils and schools take to turfing over their open spaces with a product which is most often made from a mix of plastics—polypropylene, polyurethane and polyethylene—there is growing alarm amongst conservationists and green groups.
They say the easy fix of a fake lawn is threatening the habitat of wildlife, including butterflies, bees and garden birds as well as creating waste which will never biodegrade.

I’m reminded of the artificial gardens of Don DeLillo’s new novel, Zero K, where plastic trees and flowers tremble lifelessly in an air-conditioned breeze, installed as part of a remote desert complex devoted to human immortality.

Only here, it’s the everyday landscape of Britain, slowly but surely being plasticized, replaced by a chemical surrogate for living matter, this ubiquitous manufactured stand-in for the picturesque English gardens of an earlier generation.

Lost butterflies flutter over plastic lawns, smelling nothing but petrochemicals. Bees land on the petals of polyester flowers and pick up the dust of industrial dyes rather than pollen. Excess drops of translucent glue glow in the afternoon sunlight.

The anthropocene is not only a global transformation; it takes place in—it takes the place of—your own backyard.

(Vaguely related: In the Garden of 3D Printers).


You might recall our earlier look at the work of Dutch photographer Gerco de Ruijter, who has been documenting the landscape phenomenon known as “grid corrections,” or where the U.S. road system is forced to deviate in order to account for the curvature of the Earth.

De Ruijter has now animated many dozens of those photos, with a soundtrack by Michel Banabila, into a one-minute video, embedded above. Watch roads tick into and out alignment across the American plains, as a grid of rectilinear lines faces geometric defeat on the surface of a sphere.

(Read more over at Travel + Leisure).

“Building with metals not from Earth”

I missed the story last month that a company called Planetary Resources had successfully 3D-printed a small model using “metals not from Earth”—that is, metal harvested from a meteorite. “Transforming a chunk of space rock into something you can feed into a 3D printer is a pretty odd process. Planetary Resources uses a plasma that essentially turns the meteorite into a cloud that then ‘precipitates’ metallic powder that can be extracted via a vacuum system. ‘It condenses like rain out of a cloud,’ said [a company spokesperson], ‘but instead of raining water, you’re raining titanium pellets out of an iron nickel cloud.’ (…) ‘Everyone has probably seen an iron meteorite in a museum, now we have the tech to take that material and print it in a metal printer using high energy laser. Imagine if we could do that in space.’”

Extra-Terrestrial Sand Dunes

Geologist Michael Welland has an interesting post up about the “first detailed examination of extra-terrestrial sand dunes” on Mars, coming later this year. His post also briefly discusses the life and career of Ralph Bagnold, after whom the Martian dunes are named, as well as the granular physics of a remote landscape that, in Welland’s words, “just seems, instinctively, to be unearthly.”