On Plastic in Time

Two recent articles worth reading in each other’s context explore the unexpected long-term morphological behavior of plastic.

[Image: Photo by Benjamin Chelly, courtesy Albin-Michel/Galerie47, via The New York Times].

In one, Popular Science looks at the curatorial difficulties posed by plastic objects. Today, we read, “chemists and curators are in near-constant collaboration, working to preserve the world’s modern and contemporary art collections with methods derived from the field of heritage science. The thing is, no one’s actually certain what the best course of action is.”

For example, “museums are still stumped by plastics. Little is known, [University College London chemist Katherine Curran] says, about how plastics degrade, let alone how to stop it. But perhaps most surprising is the fact that most museums don’t even know the type of plastics in their collection. ‘Things often get classified as “plastic,”’ Curran says, ‘and that’s not that helpful.’”

The entire article is worth reading, especially for architects committed to using novel materials in their work without a clear sense of how those materials will behave over time (in particular, when novel materials are used as exterior cladding).

The other article to throw into the mix here describes the behavior of plastic furniture over multiple years and decades as a kind of open-air materials science experiment, unfolding in real time.

“One famous designer chair is oozing goop. Another has exploded into puffs of foam. A bookcase’s shelves bubbled as gases formed within,” The New York Times writes. “The culprits? Plastic. And time.

Like the article linked above, this one looks at plastic’s surprising mutability, given the material’s otherwise notorious, planet-threatening ability to outlast human civilization. It specifically discusses the work of designer Gaetano Pesce, including a cabinet of his that “bulged and warped as gases formed in its depths.” Pesce’s giddy response to his worried client? “The cabinet is alive and beautiful,” he allegedly said. “I so wish I was there to see my work evolving.”

That article also introduces the great phrase “furniture components with questionable futures,” writing that these sorts of “experimental objects are falling into mysterious decay” and that this fate is already visible with 3D-printed artworks, for example, made using materials whose long-term performance is completely unknown.

What’s so compelling about both of these articles for me is the basic idea that something perceived as nightmarishly eternal is, in fact, subject to deeply flawed mundane transformation, and that artificial objects supposedly facing near-geological lifespans actually perform, behave, and decay in semi-biological ways. What’s more, museum curators are ironically being tasked with stopping the decay of a material that, in almost other ecological context, cannot degrade fast enough.

This is not to suggest that we can therefore be cavalier in our use of plastic, but simply that the world of immortal things will not last forever after all.

Literary Architecture

[Image: Photo via ].

There are still a few days left to apply for a spot in Matteo Pericoli’s Laboratory of Literary Architecture, this time setting up shop in Prague from June 7-11.

“Architectural space is made of sequences, revelations, expectations and rhythm,” Pericoli explains, so “why not try to create a piece of architecture that explicitly embodies the structure of a literary text?” The program “is neither an architecture workshop nor a literature workshop,” he adds. “It is an exploration of the tight interconnection between narrative and space. We will use principles of architectural design to describe literary structures.”

Learn more about the LabLitArch website, where you can also see some of Pericoli’s own visual explorations of architectural narrative.

Stairway to Nowhere

[Image: Photo by Tõnu Tunnel].

The Estonian Academy of Arts continues to produce interesting site-specific installations in the nation’s remote and often extraordinary landscapes, the most-recent example being an observation tower and staircase built amidst the sprawling Tuhu bog.

[Image: Photo by Tõnu Tunnel].

According to the project’s accompanying text, “the design challenge was to provide a better view of the bog landscape and allow people to monitor the movement of moorland birds, raising observers above the landscape.”

[Image: Photo by Tõnu Tunnel].

The site came with some obvious constraints: “How to design an observation tower that takes its delicate environment into account whilst adding a layer of contemporary spatial design?” the school asked.

“What kind of space would hikers and ornithologists appreciate? What are the restrictions when constructing something for a location that is flooded several times a year, where the temperature can change from +25C to -25C, easily, and which is a home to a number of protected species?”

[Image: Photo by Tõnu Tunnel].

The piece does, admittedly, look much better in the snow, where it blends into the surrounding landscape and can even be difficult to distinguish against the quiet background; without snow, the structure looks a bit more ramshackle.

[Images: Drone photo by Tõnu Tunnel].

Nevertheless, the most interesting part of the whole project is perhaps the overall educational context: the department of interior architecture at the Estonian Academy of Arts has teamed with architects b210 and Estonian Forest Management Centre to teach “a special class on small-scale buildings… focused on nature infrastructure—resulting in a number of observation towers and shelters. The purpose of the educational process is to show how considerate spatial design can add to the beauty of natural landscapes through human-scale, site-specific structures, and to advance local spatial culture.”

If some enterprising multimillionaire or ambitious school administrator is reading this, please bring this sort of collaboration here to Southern California. Observation towers for the San Andreas Fault. Desert shelters for the canyons near Joshua Tree. Acoustic listening platforms for the coast near Point Mugu.

(Previously on BLDGBLOG: Forest Megaphone).

Gold Fault Laser

[Image: Drawing courtesy Geothermal Futures Lab].

In the general chaos of renovating a house here in Los Angeles, I missed this lecture and reception on Friday night, launching a semi-fictional “Geothermal Futures Lab” at SCI-Arc.

It involves installing a gold-plated laser somewhere deep in the San Andreas Fault to extract geothermal energy from the landscape. Think of it as a kind of gonzo version of the San Andreas Fault Observatory at Depth.

[Image: Drawing courtesy Geothermal Futures Lab].

The press release, from architect Mark Foster Gage, is a great example of a solipsistic inventor’s imagination at full blast—featuring “geothermal resonance technologies,” nano-gold foil-wrapped laser components, an “experimental phenolic cured resin foam,” and so on.

The functioning of the equipment would also rely, at least partially, on existing “metal deposits along the strike-slipping continental plates,” bringing to mind both the naturally occurring nuclear reactors in Gabon and the giant Earth-battery cells circulating beneath the forests of central Canada: landscapes whose geochemistry lends them to these sorts of giant, speculative energy installations.

Or see Norway’s extraordinary Hessdalen lights, a geologically electrified valley that seems ripe for a Mark Foster Gage-like architectural-energy proposal.

In all these cases, of course, what’s also worth noting is that, as fantastic as this sort of facility might seem—whether it’s a lab extracting electrical energy from the San Andreas Fault, as Foster Gage suggests, or one positioned above geochemical differentials in the Canadian soil—as soon as the power it supplies can be made available through the national grid, it would immediately pass from some sort of absolutely bonkers sci-fi vision of the near-future to, frankly, something utterly mundane. It would simply be where the power comes from, and people would shrug it off as a mere utility (if they think about it at all).

But what this also means is that we might already, right now, be missing out on seeing the truly otherworldly nature of our own power-generation facilities, which have all too easily disappeared into the infrastructural background of the modern world. Science fiction is already here, in other words, we just tend to refer to it as infrastructure. See, for example, Crescent Dunes or PS10. Or, for that matter, take a harder look at oil.

[Images: Drawings courtesy Geothermal Futures Lab].

In any case, here’s a sample from the project text, obligatory typos and all:

The exhibited technology capitalizes on the unique tungsten-saturated substrate of the San Andres fault through the use of a visible-light Q-switched Nd:YAG lasers, tuned to extract sustainable magno-electrical energy from a +678 degree Kelvin supercritical water deposits located adjacent to a stable magma chamber 4.4km beneath the Earths surface. This supercritical water, that behaves both as liquid and gas, is vaporized through 3,780 Kelvin bursts which at peak power induce a supercritical matter state releasing energy in exponential excess of its matter equivalent. The presence of heterogeneous frequency fields in metal deposits along the strike-slipping continental plates supercharges the pockets of supercritical water with magnetic nuons which are forced upwards with velocity µ as a result of the pressure gradient along the vertical faults. Due to the variable decay rate of metals in the presence of such high trajectory nuons, the prototype laser resonance mechanism itself is encased in an experimental phenolic cured resin foam (Cas no. 000050-00-0 with a normal specific gravity of 120 kg/m3) which insulates the process from outside magnetic interference. For rapid nuon decay protection the foam resin is additionally coated with the same seven µm micrometer nano-gold foil used to encase existing NASA satellites. This thick film of gold nano-molecules particles gives the machine its striking gold aesthetic appearance.

A nuon-resistant radiant machine buried in the San Andreas Fault, extracting energy from the friction between tectonic plates? With lasers? Yes, please.

[Images: Drawings courtesy Geothermal Futures Lab].

The exhibition itself is up until March 4; stop by SCI-Arc to see more or check out the project’s website.

(Earlier on BLDGBLOG: San Andreas: Architecture for the Fault. Thanks to Wayne Chambliss and Eva Barbarossa for the heads up!)

Conversion Moment

[Image: Proposal for a converted residential water tower in Utrecht, by Zecc Architects; rendering by 3D Studio Prins, based on a photo by Stijnstijl Fotografie].

While we’re looking at work by Zecc Architects, it’s worth checking out their proposed renovation of a water tower in Utrecht.

A circular room with panoramic views of the city, and a modern fireplace in the center? Yes, please.

[Image: Proposal for a converted residential water tower in Utrecht, by Zecc Architects; rendering by 3D Studio Prins].

I even love where the tower’s original brick core is revealed, despite appearing in something as mundane as a restaurant.

[Image: Proposal for a converted residential water tower in Utrecht, by Zecc Architects; rendering by 3D Studio Prins].

As a very brief aside, meanwhile, one of many things that remains amazing to me about the architectural world today is that these sorts of buildings—grandiose brick megastructures, from water towers to old tobacco warehouses to classic New York brownstones—are immensely popular as domestic renovations or large-scale residential conversions, but they otherwise seem to be completely beyond the pale for architects to consider designing from scratch in the present day. Even when contemporary architects do take on such commissions, they seem to leave their creativity at the door.

As a former New Yorker, it always blew me away that incredible building stock existed in neighborhoods such as DUMBO—that is, huge warehouses featuring recessed arched windows, ornamented brick, and, at times, gorgeous exterior buttressing—or that even the most random online image search for historical warehouse districts pop up such incredible and evocative buildings. Yet there seems to be no appetite, either amongst developers or architects, to explore what architects could do with these same styles and languages today.

Even just imagining a 21st-century brick super-warehouse (or circular tower) built from scratch in New York City—or Boston, or Bermondsey, or Hamburg—featuring modern interiors and finishes, and designed to avoid the headaches of older building stock, makes my head swoon, and there is no doubt in my mind that elaborate, architecturally complex brick megastructures could be realized today without falling into kitsch or postmodern quotation. And there is also, in fact, no inherent reason why creating brickwork residential super-projects should lead to an emerging financial ecosystem for absent investors in the process.

But, hey: I’m not a real estate developer and I have no way to change the game.

Drawing Science/Drawing Fiction

I’ve been remiss in posting about a graduate course I’ll be co-teaching with the brilliant Nicholas de Monchaux up at UC Berkeley for the 2018-2019 academic year. The application period is currently open through December 2017.

Called “Drawing Science/Drawing Fiction: The Future of Californian Ecology,” the year-long Master’s course will be a combination of architectural design, experimental drawing methods, and narrative speculation, exploring what de Monchaux calls a “new relationship between architecture, media, ecology, and craft.”

The idea is to look ahead, not just at the future of California, but at the future of what California represents: cutting-edge industrial design, the global cinematic imagination, unparalleled demographic integration, agricultural innovation, adaptive infrastructure, and, of course, the risks of climate change.

[Image: From David Maisel’s “The Lake Project”; used with permission of the artist].

With the entire state of California at their disposal, students will be able to focus on everything from the U.S./Mexico border to the San Andreas Fault, from Silicon Valley and space tourism to the sci-fi productions of Hollywood. Agriculture, Artificial Intelligence, electric cars; species loss, wildfire, drought; policing, governance, human labor.

There are architectural scenarios to design and explore for all of these.

[Image: California’s Ivanpah Solar Energy Generating System photographed by Ethan Miller for Getty Images, via The Atlantic].

In an interview with Boom California published in 2014, novelist Kim Stanley Robinson—who was also interviewed here on BLDGBLOG way back in 2007—commented on the science-fictional appeal of California. By the time he went to college, he remarked, the landscape of the state had fundamentally changed; it was being terraformed for human habitation by the forces of industry and suburban development.

California, he realized, was itself a design project.

[Images: From David Maisel’s “The Lake Project”; used with permission of the artist].

Robinson explained to Boom that, in the blink of an eye, California became a “completely different landscape. At that same time I started reading science fiction (…) and it struck me that it was an accurate literature, that it was what my life felt like; so I thought science fiction was the literature of California. I still think California is a science fictional place. The desert has been terraformed. The whole water system is unnatural and artificial. This place shouldn’t look like it looks, so it all comes together for me. I’m a science fiction person, and I’m a Californian.”

Science fiction is the literature of California.

[Image: Early rendering for Michael Maltzan’s Six Street Viaduct in Los Angeles].

Briefly, this theme was developed further by an essay by Michael Ziser published in the same issue of Boom. “Postwar science fiction is to a surprising degree a phenomenon of the western United States,” Ziser wrote. It was also quite specifically Californian.

“As the producers of Golden Age sci-fi were lured to the region by the new economic opportunities available to writers in the pulp, television, and film industries of Southern California,” Ziser continued, “they were also drawn into an imaginative relationship with California’s physical novelty as a place sprung de novo from the plans of hydraulic engineers, road builders, and tract housing developers.”

Many of the major themes of science fiction in this period—the experience of living in an arid Martian colony, the palpable sense of depending in a very direct way on large technological systems, unease with the scope and direction of the military and aeronautics industries, the navigation of new social rules around gender and race—can be read as barely veiled references to everyday life in California. For sci-fi writers, teasing out the implications of an era in which entire new civilizations could be conjured almost from nothing through astonishing feats of engineering and capital was a form of realism. They were writing an eyewitness account of what was the most radical landscape-scale engineering project in the history of the world.

This idea of an “imaginative relationship with California’s physical novelty” is something we will be exploring in architectural form throughout the Studio One experience. In the process, we will approach California itself as a subject of design and compare the state to other regions currently experiencing their own de novo re-inventions, whether it’s a thawing Arctic or China’s ongoing building boom.

[Image: Floating caisson during the construction of the original Bay Bridge; photo by Clyde Sunderland, courtesy Library of Congress].

To develop and articulate their visions, students will be pushed to experiment with new forms of architectural representation, modeling, and drawing—or, as de Monchaux writes, “Our chief medium will be drawing, but we will engage and embrace a world of devices and tools—from scripting through mapping and virtual reality-that are changing, and expanding, the capacity of architecture to influence the world.”

I will be up in the Bay Area multiple times for this throughout the academic year, although not on a full-time basis; if you’re a fan of de Monchaux’s work, of science fiction, of architecture, of design’s potential for conjuring radical visions of landscape futures, then please consider applying. You have roughly two more months to do so.

[Image: Farming California, via Google Maps].

More information is available over at UC Berkeley.

Fab

[Image: “The Sphere” by Oliver Tessman, Mark Fahlbusch, Klaus Bollinger, and Manfred Grohmann].

The Bartlett School of Architecture has made all three volumes of Fabricate, their excellent series of books and conference proceedings dating back to 2011, free to download.

[Image: Matter Design’s La Voûte de LeFevre, Banvard Gallery (2012)].

More than 700 pages’ worth of technical experiments, speculative construction processes, new industrial tools, and one-off prototypes, the books are a gold mine for research and development.

[Image: Greg Lynn’s “Embryological House,” Venice Biennale (2002)].

3D printers, buoyant robots, multi-axis milling machines, directed insect-secretion, cellular automata, semi-autonomous bricklaying, self-assembling endoskeletons, drone weaving—it’s hard to go wrong with even the most cursory skimming of each volume, and that doesn’t even mention the essays and interviews.

[Image: “Custom forming tool mounted on the six-axis robotic arm,” via Fabricate 2014]

Download each book—from 2017, 2014, and 2011—and be prepared to lose a few days reading through them.

Arch History

[Image: Spiral Arches by Daydreamers Design].

A project I noted while serving as one of many, many design jurors this year for the Architizer A+Awards used a spiraling outdoor corridor of arches in the United Arab Emirates to tell the history of the Islamic arch.

[Image: Spiral Arches by Daydreamers Design].

The Hong Kong-based team behind the project, Daydreamers Design, explained that they organized the arches into ten typologies, then arrayed those into a much larger sequence, “in historical order.”

[Images: Spiral Arches by Daydreamers Design].

In other words, as you meander down the hallway, you also move forward—or backward—through arch history.

[Images: Spiral Arches by Daydreamers Design].

For what it’s worth, I’d love to see something similar done with Western design orders, or even cathedral buttresses.

In any case, the project did not win any A+Awards, but it remains noteworthy, nonetheless. Watch a short video of the project, below.

Inflatables Give Structure To Air

[Image: A project by Haus-Rucker-Co].

ONE
Three men with oversize briefcases show up in New York City. They drop their cases onto the sidewalk and leave them there, disguised amongst the workday crowds, several blocks away from one another, unattended. Ten minutes later, the cases pop open: a whirring sound is heard as small industrial fans begin to operate, inflating carefully packed chains of linked polyethylene structures. Buildings emerge, expanding out from each case until entire rooms and corridors block the street. No one knows how to turn the fans off. The buildings are growing, labyrinthine, turning corners now and halting traffic. A news helicopter captures the scene from above as the transparent walls of huge empty buildings made of air flash with the colored lights of police cars.

[Image: An “inflatable nested toroid structure” patented by NASA (PDF)].

TWO
A man toils for thirteen years, sending ever-more complex test diagrams off to polyethylene factories in Florida. He wants to know how much it would cost for them to manufacture these parts he’s been designing, and designing well: temporary inflatable rooms that link off from other rooms, multi-scalar gaskets able to withstand knife attacks, even strange, one-time entry points that can be resealed from within. A retired cargo pilot, he dreams of giving structure to air. He writes, Man can live on air alone!, and sketches obscene bulbous shapes on paper napkins to the discomfort of passing strangers.

[Image: Inflatable toroid test; via NASA/Wikipedia].

THREE
A building made of polyethylene and sealed air takes shape on a beach near Cape Canaveral. Tourists flock to it, taking selfies and filming short videos with their kids. But the midday sun is relentless; the structure is heating and the winds are picking up. Within two hours, the complex inflated shape begins to tremble and beat against the sand, until, accompanied by an audible gasp from the assembled crowd, it is sucked out to sea. It tumbles and rolls and rises through the sky, a spinning point reflecting glints of subtropical sunlight as it disappears over the Atlantic horizon. No one can say who it was, but all witnesses insist there was a man inside. Sure enough, smartphone video of the structure being lifted over the waves reveals a man bracing himself against the interior walls, bearing an expression somewhere between mania and glee. Two weeks later, French police find him, disoriented and unshaven, lacking his passport, at a seaside bar in Arcachon. “I have a very strange story to tell you,” he slurs, before falling off his seat.

The Walled City (10-Mile Version)

[Image: “The Walled City (10-Mile Version)” by Andrew Kudless/Matsys].

A new exhibition opens next week at the Hubbell Street Galleries in San Francisco, part of the California College of the Arts, called Drawing Codes: Experimental Protocols of Architectural Representation. The idea behind the group show is to look at “the relationship between code and drawing” (emphases theirs), or “how rules and constraints inform the ways we document, analyze, represent, and design the built environment.”

Drawing Codes is curated by Andrew Kudless and Adam Marcus, with Clayton Muhleman, and it features work by Erin Besler, Elena Manferdini, Jimenez Lai, the Oyler Wu Collaborative, Rael San Fratello, and many more.

As Kudless—of Matsys fame—pointed out to me over email, the curators “gave all of the participants a set of codes that they had to follow (e.g. all black and white, orthographic projection, 25″ x 25″, etc.),” using this set of constraints to, among other things, foreground differences in approach between each participating architect.

If everyone’s doing the same thing, then how each person does it becomes more revealing.

[Image: “Half-Hearted Diamonds” by Jimenez Lai/Bureau Spectacular].

Perhaps ironically, it was actually the drawing by Kudless himself—which I first saw on Instagram—that caught my interest.

Called “The Walled City (10-Mile Version),” that project imagines an entire metropolis that is nothing but one, continuous wall.

Kudless explained that it came about by posing himself a rhetorical question: “What would a city look like if it was a wall and nothing else? I’ve been fascinated with walls that have grown thick enough to be buildings in themselves. From medieval European city walls to the Great Wall in China, there is something really interesting about taking something that is ostensively about separating two territories and turning into an inhabitable space in its own right.”

[Image: Close-up from “The Walled City (10-Mile Version)” by Andrew Kudless/Matsys].

The results: a rule-constrained exploration of how a wall could become a city.

I started to play around with slowly increasing a wall’s length while preventing it from moving outside a site or intersecting itself. At a certain point in the growth process, the wall takes over the entire site. There is still an inside and outside to the wall, but sometimes the outside is deep inside the site boundary or vice versa. At that point, I was left with a big squiggly wall, but realized that I needed some sort of roofscape to make it read as a city and not just a thick wall. That’s when I turned to Google’s autocomplete feature to give me suggestions on what programs [spatial functions] a rooftop might support. I worked my way from A to Z pretty much accepting whatever suggestion Google’s autocomplete gave me and started designing parametric definitions that could implement that program on a number of different sites along the wall’s top.

The various social and architectural functions distributed around the massive roofscape included, for example, Rooftop Antenna, Rooftop Bar, Rooftop Cafe, Rooftop Deck, Rooftop Exhaust, Rooftop Film, Rooftop Garden, Rooftop Hotel Pool, and so on.

Interestingly, Kudless also pointed out that, if he were to run the same generative script again, it would likely produce “a similar, but not identical city,” and it would almost certainly not result in a wall exactly ten miles in length (which, in this case, was purely a coincidence, he explained).

In any case, I’ve been impressed by Kudless’s work for a long time; check out these older posts on his projects Nevada Sietch and robotic drawing protocols, for example, and then stop by the exhibition when it opens next week. There will be a reception on January 19 at 5:30pm at 161 Hubbell Street. More info.

“500 Years of Utopia” Opens

[Image: Thomas More’s Utopia].

There are two quick thing coming up this week that I wanted to post about:

1) At 7pm on Wednesday, November 9, I’ll be moderating a public conversation with an amazing group of Los Angeles-based designers, architects, and critics at USC’s Doheny Memorial Library. This is part of a larger evening, organized around the theme of “500 Years of Utopia.”

2016, after all, is the 500th anniversary of the publication of Thomas More’s book, and we’ll be launching a small exhibition looking back at More’s influence on political, urban, and even architectural thought—but more on that, below.

[Image: “500 Years of Utopia” title card; design by David Mellen].

Kicking things off at 7pm on Wednesday evening, Los Angeles Times architecture critic Christopher Hawthorne will be interviewing Alex Ross, music critic for the New Yorker and author of The Rest Is Noise: Listening to the 20th Century; they’ll be discussing the relationship between émigré composers in Southern California, the music of exile, and “utopian thought.”

This will be followed by a panel discussion featuring urbanist and landscape architect Mia Lehrer; games designer and critic Jeff Watson; architect and writer Victor Jones; and critic Christopher Hawthorne.

We’ll be looking at the role of utopia in contemporary design, with a specific focus on questions of access. We can talk about utopia all we like, in other words—but utopia for whom? In other words, if utopia is already here, who has access to it? Who has the right to design utopia? Who has the right to critique it?

[Image: Early type experiment for “500 Years of Utopia”; design by David Mellen].

Last but not least, we’ll hear from journalist and critic Claire Hoffman, who will introduce us to her newly published memoir Greetings from Utopia Park: Surviving a Transcendent Childhood.

The event is free and open to the public; however, please RSVP if you hope to attend. More information is available at that link, including parking, street address, and more.

[Image: Thomas More’s Utopia].

The second thing I wanted to mention, then, is in the same place and on the same evening, but at 5:30pm. We will be kicking off our brand new exhibition, in USC’s Doheny Memorial Library, called “500 Years of Utopia.”

For 500 years, utopia—a word coined by Sir Thomas More to describe the ideal city—has been used as popular shorthand for a perfect world and lies at the heart of the Western political imagination. But what does it really mean today in the context of 21st-century urbanism, especially in a megacity like Los Angeles that has been the setting for utopian and dystopian thinking almost since its founding? A new exhibition of materials from the USC Libraries’ collections explores these questions, the history of utopian thinking, and the fine line between utopia and dystopia.

In addition to a wealth of utopian/dystopian material taken directly from the USC Libraries, we’ve used an interesting graphic approach of overlaid, differently colored exhibition text, one (in red) offering a utopian interpretation of the media and objects on display, the other (in blue) offering a dystopian spin. Decoder glasses will be on hand to assist…

Please stop by for our opening reception at 5:30pm on Wednesday, November 9. It, too, is free and open to the public, and it segues directly into the event that kicks off at 7pm.

More information is available over at USC.