Hard Drives, Not Telescopes

[Image: Via @CrookedCosmos].

More or less following on from the previous post, @CrookedCosmos is a Twitter bot programed by Zach Whalen, based on an idea by Adam Ferriss, that digitally manipulates astronomical photography.

It describes itself as “pixel sorting the cosmos”: skipping image by image through the heavens and leaving behind its own idiosyncratic scratches, context-aware blurs, stutters, and displacements.

[Image: Via @CrookedCosmos].

While the results are frequently quite gorgeous, suggesting some sort of strange, machine-filtered view of the cosmos, the irony is that, in many ways, @CrookedCosmos is simply returning to an earlier state in the data.

After all, so-called “images” of exotic celestial phenomena often come to Earth not in the form of polished, full-color imagery, ready for framing, but as low-res numerical sets that require often quite drastic cosmetic manipulation. Only then, after extensive processing, do they become legible—or, we might say, art-historically recognizable as “photography.”

Consider, for example, what the data really look like when astronomers discover an exoplanet: an almost Cubist-level of abstraction, constructed from rough areas of light and shadow, has to be dramatically cleaned up to yield any evidence that a “planet” might really be depicted. Prior to that act of visual interpretation, these alien worlds “only show up in data as tiny blips.”

In fact, it seems somewhat justifiable to say that exoplanets are not discovered by astronomers at all; they are discovered by computer scientists peering deep into data, not into space.

[Image: Via @CrookedCosmos].

Deliberately or not, then, @CrookedCosmos seems to take us back one step, to when the data are still incompletely sorted. In producing artistically manipulated images, it implies a more accurate glimpse of how machines truly see.

(Spotted via Martin Isaac. Earlier on BLDGBLOG: We don’t have an algorithm for this.”)

Landscapes of Data Infection

seeds[Image: An otherwise unrelated seed x-ray from the Bulkley Valley Research Centre].

There’s a fascinating Q&A in a recent issue of New Scientist with doctor and genetic researcher Karin Ljubic Fister.

Fister studies “plant-based data storage,” which relies on a combination of artificially modified genes, bacteria, and “infected” tobacco plants.

Comparing genetic programming with binary code, Fister explains that, “First you need a coding system. A computer program is basically a sequence of 0s and 1s, so we transformed this into the four DNA ‘letters’—A, G, C and T—by turning 00 into A, 10 into C, 01 into G and 11 into T. Then we synthesised the resulting DNA sequence. We transferred this artificial DNA into a bacterium and infected the leaf of a tobacco plant with it. The bacterium transfers this artificial DNA into the plant.”

Even better, the resulting “infection” is heritable: “We took a cutting of the infected leaf, planted it, and grew a full tobacco plant from it. This is essentially cloning, so all the leaves of this new plant, and its seeds, contained the ‘Hello World’ program encoded in their DNA.” The plants thus constitute an archive of data.

In fact, Fister points out that “all of the archives in the world could be stored in one box of seeds.” Now put that box of seeds in the Svalbard Global Seed Vault, she suggests, and you could store all the world’s information for thousands of years. Seed drives, not hard drives.

It’s worth reading the Q&A in full, but she really goes for it at the end, pointing out at least two things worth highlighting here.

saguaros[Image: “Higashiyama III” (1989) by Kozo Miyoshi, courtesy University of Arizona Center for Creative Photography; via but does it float].

One is that specialized botanical equipment could be used as a technical interface to “read” the data stored in plants. The design possibilities here are mind-boggling—and, in fact, are reminiscent of the Landscape Futures exhibition—and they lead directly to Fister’s final, amazing point, which is that this would, of course, have landscape-scale implications.

After all, you could still actually sow these seeds, populating an entire ecosystem with data plants: archives in the form of forests.

“Imagine walking through a park that is actually a library,” she says, “every plant, flower and shrub full of archived information. You sit down on a bench, touch your handheld DNA reader to a leaf and listen to the Rolling Stones directly from it, or choose a novel or watch a documentary amid the greenery.” Information ecosystems, hiding in plain sight.

Just-in-Case Informatics

[Image: A screen grab from the homepage of Orbital Insight].

Proving that some market somewhere will find a value for anything, a company called Orbital Insight is now tracking “the shadows cast by half-finished Chinese buildings” as a possible indicator for where the country’s economy might be headed.

As the Wall Street Journal explains, Orbital Insight is part of a new “coterie of entrepreneurs selling analysis of obscure data sets to traders in search of even the smallest edges.” In many cases, these “obscure data sets” are explicitly spatial:

Take the changing shadows of Chinese buildings, which Mr. Crawford [of Orbital Insight] says can provide a glimpse into whether that country’s construction boom is speeding up or slowing down. Mr. Crawford’s company, Orbital Insight Inc., is analyzing satellite images of construction sites in 30 Chinese cities, with the goal of giving traders independent data so they don’t need to rely on government statistics.

If watching the shadows of Chinese cities from space isn’t quite your cup of tea, then consider that the company “is also selling analysis of satellite imagery of cornfields to predict how crops will shape up and studies of parking lots that could provide an early indicator of retail sales and quarterly earnings of companies such as Wal-Mart Stores Inc. and Home Depot Inc.”

[Image: A screen grab from the homepage of Orbital Insight].

The resulting data might not even prove useful; but, in a great example of what we might call just-in-case informatics, it’s scooped up and packaged anyway.

The notion that there are fortunes to be made given advance notice of even the tiniest spatial details of the world is both astonishing and sadly predictable—that something as intangible as the slowly elongating shadows of construction sites in China could be turned into a proprietary data point, an informational product sold to insatiable investors.

Everything has a price—including the knowledge of how many cars are currently parked outside Home Depot.

Read more at the Wall Street Journal.

Planet Harddrive

[Image: “Conceptual diagram of satellite triangulation,” courtesy of the Office of NOAA Corps Operations (ONCO)].

I’ve long been fascinated by what I might call the geological nature of harddrives – how certain mineral arrangements of metal and ferromagnetism result in our technological ability to store memories, save information, and leave previous versions of the present behind.

A harddrive would be a geological object as much as a technical one; it is a content-rich, heavily processed re-configuration of the earth’s surface.

[Image: Geometry in the sky. “Diagram showing conceptual photographs of how satellite versus star background would appear from three different locations on the surface of the earth,” courtesy of the Office of NOAA Corps Operations (ONCO)].

This reminds me of another ongoing fantasy of mine, which is that perhaps someday we won’t actually need harddrives at all: we’ll simply use geology itself.

In other words, what if we could manipulate the earth’s own magnetic field and thus program data into the natural energy curtains of the planet?

The earth would become a kind of spherical harddrive, with information stored in those moving webs of magnetic energy that both surround and penetrate its surface.

This extends yet further into an idea that perhaps whole planets out there, turning in space, are actually the harddrives of an intelligent species we otherwise have yet to encounter – like mnemonic Death Stars, they are spherical data-storage facilities made of content-rich bedrock – or, perhaps more interestingly, we might even yet discover, in some weird version of the future directed by James Cameron from a screenplay by Jules Verne, that the earth itself is already encoded with someone else’s data, and that, down there in crustal formations of rock, crystalline archives shimmer.

I’m reminded of a line from William S. Burroughs’s novel The Ticket That Exploded, in which we read that beneath all of this, hidden in the surface of the earth, is “a vast mineral consciousness near absolute zero thinking in slow formations of crystal.”

[Image: “An IBM HDD head resting on a disk platter,” courtesy of Wikipedia].

In any case, this all came to mind again last night when I saw an article in New Scientist about how 3D holograms might revolutionize data storage. One hologram-encoded DVD, for instance, could hold an incredible 1000GB of information.

So how would these 3D holograms be formed?

“A pair of laser beams is used to write data into discs of light-sensitive plastic, with both aiming at the same spot,” the article explains. “One beam shines continuously, while the other pulses on and off to encode patches that represent digital 0s and 1s.”

The question, then, would be whether or not you could build a geotechnical version of this, some vast and slow-moving machine – manufactured by Komatsu – that moves over exposed faces of bedrock and “encodes” that geological formation with data. You would use it to inscribe information into the planet.

To use a cheap pun, you could store terrabytes of information.

But it’d be like some new form of plowing in which the furrows you produce are not for seeds but for data. An entirely new landscape design process results: a fragment of the earth formatted to store encrypted files.

Data gardens.

They can even be read by satellite.

[Image: The “worldwide satellite triangulation camera station network,” courtesy of NOAA’s Geodesy Collection].

Like something out of H.P. Lovecraft – or the most unhinged imaginations of early European explorers – future humans will look down uneasily at the earth they walk upon, knowing that vast holograms span that rocky darkness, spun like inexplicable cobwebs through the planet.

Beneath a massive stretch of rock in the remotest state-owned corner of Nevada, top secret government holograms await their future decryption.

The planet thus becomes an archive.

(Earlier on BLDGBLOG: Geomagnetic Harddrive).