The Comet as Landscape Art

[Image: Photo courtesy ESA].

Intrigued by these images as an example of how the tradition of landscape representation has rapidly progressed—from the Romantics and the Hudson River School to Rosetta—I felt compelled to post a few photos of the craggy and glacial surface of Comet 67P/Churyumov–Gerasimenko, sent back to Earth yesterday from the European Space Agency’s Rosetta spacecraft.

The surface of the comet “is porous, with steep cliffs and house-sized boulders,” making it earth-like yet deeply treacherous, an irregular terrain to photograph and a dangerous place to land.

[Image: Photo courtesy ESA].

It is the notion of “land” here that is most interesting, however, as this is really just the imposition of a terrestrial metaphor onto a deeply alien body. Yet the comet is, in effect, literally a glacier: a malleable yet permanently frozen body of ice hurtling through space, occasionally exploding in comas and tails of vapor.

It is “an ancient landscape,” we read, “and yet one that looks strangely contemporary as the sun vaporizes ice, reworking the terrain like a child molding clay.”

Think Antarctica in a winter storm, not southern Utah—or Glacier National Park, not the Grand Canyon.

[Image: Photo courtesy ESA].

Along those lines, some of the most provocative writing on what it means to visually represent the frozen and hostile landscapes of the Antarctic is by writer William L. Fox, whose work offers some useful resonance here.

Fox has written, for example, about the technical and even neurological difficulties in accurately representing—let alone comprehending or simply navigating—Antarctic space and the vast forms that frame it.

Distant landscapes distorted by thermal discontinuities; white levels pushed to the absolute limit of film chemistry; impossible contours throwing off any attempt at depth perception; even the difficulty of distinguishing complicated mirages from actual landforms: these are all part of the challenge of creating images of an exotic landscape such as the Antarctic.

As Fox writes, it was even specifically the tradition of Dutch landscape painting, combined with the maritime practice of sketching coastal profiles, that first introduced the visual world of the Antarctic to western viewers: it was thus seen as an ominous, ice-clogged horizon of fog and low clouds looming always just slightly out of ship’s reach at the bottom of the world.

He calls this the genre of “representational exploration art.”

[Image: Photo by Stuart Klipper from his fantastic book, The Antarctic: From the Circle to the Pole, with a foreword by William L. Fox].

In one interesting passage in his book Terra Antarctica, he suggests that the south polar landscape is so extreme, it often resists natural analogy. As Fox describes it, the wind-carved boulders and isolated pillars and cliffs of ice are more like “artworks by Salvador Dalí and Henry Moore, evoking the spirit of surrealism with the former and modernist forms with the latter. The Antarctic is so extreme to our visual expectations that, once we attempt to move beyond measurement to describe it, analogies with other parts of nature fall short, and we resort to comparisons with cultural artifacts that push at the boundaries of our perceptions.”

These include “cultural artifacts such as sculpture and architecture, products more of the imagination than of nature.”

Consider, for instance, that comet 67P is widely known today as the “rubber-duck comet” due to its bifurcated structure, implying, as Fox suggests with the Antarctic, that no natural analogy seemed adequate for describing the comet’s geometry.

[Image: The gateway arches of the Antarctic; photo by Stuart Klipper from, The Antarctic: From the Circle to the Pole, foreword by William L. Fox].

But what are we to make of comet 67P now that we can see it as a physical landscape, not just an ephemeral optical phenomenon passing, at great distance, through the sky? When a blur becomes focused as terrain, what is the best way to describe it? What visual or textual traditions are the most useful or evocative—vedas and sutras or laboratory reports?

Put another way, is poetry as appropriate as a scientific survey in such a circumstance—should “we attempt to move beyond measurement to describe it,” in Fox’s words—and, if not, what new genres of exploration art might result from this spatial encounter?

I’m reminded here of poet Christian Bök’s wry remark on Twitter: “I am still amazed that poets insist on writing about their divorces, when robots are taking pictures of orange, ethane lakes on Titan…”

Now that humans are beginning to land semi-autonomous camera-ships on the frozen ice fields of passing comets, sending back the (off)world’s strangest landscape art—as if a direct line runs from, say, the pastoral landscapes of Claude Lorrain or the elemental weirdness of J.M.W. Turner to the literally extraterrestrial boulders and gullies depicted by Rosetta—how should our own descriptive traditions adapt? What, we might ask, is comet 67P’s role in art history?

[Image: Approaching 67P, via the ESA].

Antarctic Island Radio

[Image: Deception Island, from Millett G. Morgan’s September 1960 paper An Island as a Natural Very-Low-Frequency Transmitting Antenna].

Yesterday’s post reminded me of an interesting proposal from the 1960s, in which an entire Antarctic island would be transformed into a radio-conducting antenna. Signals of international (or military submarine) origin could thus be bounced, relayed, captured, and re-transmitted using the topographical features of the island itself, and naturally occurring ionospheric radio noise could be studied.

[Image: A map of Deception Island, taken from an otherwise unrelated paper called “Upper crustal structure of Deception Island area (Bransfield Strait, Antarctica) from gravity and magnetic modelling,” published in Antarctic Science (2005)].

In the September 1960 issue of IEEE Transactions on Antennas and Propagation, radio theorist Millett G. Morgan, a “leading researcher in the field of ionospheric physics” based at Dartmouth, speculated that he could generate artificial “whistlers”—that is, audial electromagnetic effects that are usually caused by lightning—if only he could find the right island.

“In thinking about how to generate whistlers artificially,” Morgan’s proposal leisurely begins, “it has occurred to me that an island of suitable size and shape, extending through the conducting sea, may constitute a naturally resonant, VLF slot antenna of high quality.”

[Image: Deception Island, from “Upper crustal structure of Deception Island area (Bransfield Strait, Antarctica) from gravity and magnetic modelling,” Antarctic Science (2005)].

He looked far and wide for this “naturally resonant, VLF slot antenna,” eventually settling on a remote island in the Antarctic. “Following this line of reasoning,” he explains, “I thought first of the annular Pacific atolls, but knowing of the fresh-water lenses in them”—that is, aquatic features that would destructively interfere with radio transmissions—”[I] rejected them as being too pervious to water to be satisfactory insulators. Also, of course, they are not found in suitable latitudes for generating whistlers.”

Morgan’s reasoning continued: “The Pacific atolls are built upon submerged volcanic cones and this led me to think of Deception Island in the SubAntarctic, a remarkable, similarly shaped, volcanic island in which the volcanic rock extends above the surface; and which is located in the South Shetland Islands where the rate of occurrence of natural whistlers has been found to be very great.”

Perhaps the island could be the geologic radio antenna he was looking for.

[Image: Deception Island, from “Upper crustal structure of Deception Island area (Bransfield Strait, Antarctica) from gravity and magnetic modelling,” Antarctic Science (2005)].

Morgan points out in detail that mathematical ratios amongst the island’s naturally occurring landscape features, including its ring-shaped lagoon, are perfect for supporting radio transmissions (even the relationship between the length of the island and the radio wavelengths Morgan would be using seems to work out). And that’s before he looks at the material construction of the island itself, consisting of volcanic tuff, which would help the terrain act as an “insulator.”

There is even the fact that the island’s small lagoon is coincidentally but unrelatedly named “Telefon Bay” (alas, named after a ship called the Telefon, not for the island’s natural ability to make telephone calls).

[Image: Deception Island, from “Upper crustal structure of Deception Island area (Bransfield Strait, Antarctica) from gravity and magnetic modelling,” Antarctic Science (2005)].

Morgan’s “proposed island antenna” would thus be a wired-up matrix of transmission lines and natural landscape features, bouncing radio wavelengths at the perfect angle from one side to the other and concentrating broadcasts for human use and listening.

You could tune into the sky, huddling in the Antarctic cold and listening to the curling electromagnetic crackle of the ionosphere, or you could use your new radio-architectural set-up, all wires and insulators like some strange astronomical harp, “to generate whistlers artificially,” as Morgan’s initial speculation stated, bursting forth with planetary-scale arcs of noise over a frozen sea, a wizard of sound alone and self-deafened at the bottom of the world.

(Deception Island proposal discovered via Douglas Kahn, whose forthcoming book Arts of the Spectrum: In the nature of electromagnetism looks fantastic, and who also gave an interesting talk on “natural radio” a few years ago at UCLA).

Linkology

[Image: The Mobile Fabrication Unit by Gramazio & Kohler, soon to be building at Storefront for Art and Architecture].

Some things to read on a Monday afternoon:

—Architect Bjarke Ingels of BIG dominates the stage at TED. I was able to walk around BIG’s recently completed Mountain Dwellings in Copenhagen the other week, as part of an amazing drive around what felt like all of Denmark with Johan Hybschmann and Nicola Twilley. The building’s now-famous parking garage, we suggested only half-jokingly, would make an amazing venue for an architecture conference: its terraced parking decks overlook and focus upon a kind of inadvertent auditorium. Drive-in films, drive-in lectures, drive-in pirate radio concerts – it’s too fantastic a space not to try.

—Lebbeus Woods offers a glimpse of a film he outlined, designed, and later co-wrote with Olive Brown, called Underground Berlin. It involves a disillusioned architect, a missing twin brother, neo-Nazi activities in the divided city, metallic underground tunnels connecting east to west, and “a top-secret underground research station rumored to be somewhere beneath the very center of Berlin.” There are even rogue planetary scientists investigating “the tremendous, limitless geological forces active in the earth.” Woods’s graphic presentation of the idea is incredible, and absolutely worth a very long look.

—Meanwhile, farmers in the UK have been asked “to implement measures which would reverse the UK-wide decline in skylark numbers.” This means shaving small rectangular plots into the midst of productive cropland, because “rectangular uncropped patches in cereal fields allow skylarks to forage when crops become too dense for them.” We will prepare our landscapes for other species.

—Is your iPod maxing out the U.S. electrical grid? Perhaps it doesn’t matter: New Scientist looks at how to short-circuit the grid altogether – and would-be saboteurs the world over are still taking furious notes. Alternatively, just follow the fantastic On The Grid series by Adam Ryder and Brian Rosa to see where the electrical network really goes.

New Scientist also scanned beneath the south polar glaciers to find “Antarctica’s hidden plumbing” – and, as it happens, “the continent’s secret water network is far more dynamic than we thought.”

—Ruairi Glynn’s new book, Digital Architecture: Passages Through Hinterlands is now out; it documents Glynn’s related exhibition.

—Moving online, New York’s Architectural League has redesigned its website – joining the Canadian Centre for Architecture, who also redesigned their own site earlier this summer.

—Back in England, the BBC reports that pigs are being used “to help restore” parts of Worcestershire’s historic Wyre Forest. This comes at the same time that Cairo has realized that its absurd slaughter of every pig in the city last spring in order to guard against swine flu has led to an extraordinary garbage crisis. “The pigs used to eat tons of organic waste,” the New York Times reports. “Now the pigs are gone and the rotting food piles up on the streets of middle-class neighborhoods like Heliopolis and in the poor streets of communities like Imbaba.” Meanwhile, Edible Geography points our attention to the fascinating labyrinth of subsidiary products made from the bodies of dead pigs; welcome to “Pig Futures.”

—On io9 Matt Jones suggests that “the city is a battlesuit for surviving the future,” and he cites Archigram, Kevin Slavin, Dan Hill, Warren Ellis, the architecture of sci-fi, William Gibson, and much more to make his point. Speaking of Warren Ellis, Icon magazine recently published a long conversation between Warren, Francois Roche, and myself; you can check it out on Flickr.

—Were artificial hills, henges, and monumental earthworks a kind of “prehistoric sat nav” installed across the British landscape? And does this same question seem to be asked at least once every few years?

—The 2009 Solar Decathlon approaches.

—Gramazio & Kohler’s Mobile Fabrication Unit will arrive soon at New York’s Storefront for Art and Architecture. Between October 5 and October 27, it will be busy assembling “the first temporary public installation to be built on site by an industrial robot in New York.” Then, however, on Halloween, it will become possessed by incomprehensible forces from the Precambrian depths of the city, and, in a horrifying night of thunderous brickwork, it will wall off the island of Manhattan forever…

Antarctica’s Underground Sphere-Cathedral

In his book Terra Antarctica – previously discussed here – author William L. Fox takes us to an Antarctic field research city called, appropriately, Pole. This geodesic-domed instant city is built on Beardmore glacier – which, Fox writes, is “a ferocious uphill maze riven with thousands of crevasses,” where high-speed winds are caused not by weather in any real sense of the word, but by “dense cold air sliding off the interior toward the coast via gravity.”

16[Image: “Beardmore Glacier, slicing its way through the Transantarctic Mountains.” Via Glaciers of the World].

Pole itself is an agglomeration of Jamesway huts, “corrugated metal tunnels” slowly blown over with snow, and the massive geodesic dome for which the city has become most famous. The dome is not precisely architectural, on the other hand: “The station is more like a raft floating on a very slow moving sea of ice two miles deep than a traditional building footed on the ground.”
It is structure imposed upon frozen hydrology: the insufficiently modeled glacial surface undergoes complicated deformations, thwarting all attempts to achieve longterm stability. It’s a kind of ice seismology.
In any case, one of the most interesting aspects of the whole thing is actually found below the city, in Pole’s so-called “sewage bulbs.” To quote at length:

Water for the station is derived by inserting a heating element – which looks like a brass plumb bob 12 feet in diameter – 150 feet into the ice and then pumping out the meltwater. After a sphere has been hollowed out over several years, creating a bulb that bottoms out 500 feet below the surface, they move to a new area, using the old bulb to store up to a million gallons of sewage, which freezes in place – sort of. The catch is, the ice cap is moving northward toward the coast (and Rio de Janeiro) at a rate of about an inch a day, or 33 feet per year. That movement means that the tunnels are steadily compressing; as a result, they have to be reamed out every few years to maintain room for the insulated water and sewage pipes. Because each sewage bulb fills up in five to six years, they’re hoping – based on the length of the tunnel and the number of bulbs they can create off it (perhaps even seven or eight) – this project will have a forty-year lifespan. Ultimately, in about the year A.D. 120,000, the whole mess should drop off into the ocean.

Rather than sewage bulbs, however, why not use the same technique to melt spherical chambers of a new, inverted cathedral one thousand feet below the Antarctic surface, a void-maze of linked naves and side-chapels moving slowly down-valley with the glacier…? Rather than a church organ, for instance, you’d have the natural music of the ice itself, a glacial moan of augmented terrestrial pressures. The whole system could be sanctified, renamed Vatican 2, and new saints of ice could win Bible study grants to reside there, in thick parkas, reading Thomas à Kempis over three-month stays. A new religious movement – called glacial mysticism – soon results.
Unearthly, geometric, the voids of this new ecumenical church might even burn reflectively inside with the aurora australis.

4bg[Image: The aurora borealis – yes, the Northern, not Southern, Lights. Sorry. Via NASA].

A hundred thousand years later, the cathedral reaches the sea, where its vast internal voids are broken open and revealed in the glacial cliff face. Sections of nave and pulpit can be found floating in the water, sculpted rims of prayer-domes drifting north in the smooth surfaces of icebergs. Here and there a complete chapel; elsewhere a crypt, its tombs’ chiseled inscriptions melting slowly in the sun.
Some future group of Argentine architectural students will then take a field-trip there, sketchbooks in hand, and they’ll spend two weeks back-mapping the precisely measured structure to its original, geometric clarity.

[Image: The BLDGBLOG glacial cathedral, adapted from this photo, ©Michael Van Woert/NOAA NESDIS/ORA].

Another hundred thousand years later, there’s no trace of the cathedral at all.

The B-flat Range

[Image: Jackie Dee Grom, Antarctic ventifacts. From Cabinet].

Katabatic Winds

In the current issue of Cabinet Magazine, Jackie Dee Grom introduces us to ventifacts, or “geologic formations shaped by the forces of wind.”
Jackie was a member of the 2004 National Science Foundation’s Long-Term Ecological Research project in Antarctica, during which she took beautiful photographs of ventifactual geology – three of which were reproduced in Cabinet. (These are my own scans).

“The McMurdo Dry Valleys of Antarctica,” she writes, “are home to one of the most extreme environments in the world – a polar desert blasted by ferocious winds, deprived of all but minimal rain, and beset by a mean annual temperature of negative twenty degrees Celsius.”

It is there, in the Antarctic Dry Valleys, that “gravity-driven winds pour off the high polar plateau, attaining speeds of up to two hundred kilometers per hour.”

In the grip of these aeolian forces, sand and small pebbles hurl through the air, smashing into the volcanic rocks that have fallen from the valley walls, slowly prying individual crystals from their hold, and sculpting natural masterworks over thousands of years. The multi-directional winds in this eerie and isolated wasteland create ventifacts of an exceptional nature, gouged with pits and decorated with flowing flutes and arching curves.

In his recent book Terra Antarctica: Looking into the Emptiest Continent, landscape theorist and travel writer of extreme natural environments William Fox describes similar such ventifacts as having been “completely hollowed out by the wind into fantastic eggshell-thin shapes.”

The “cavernous weathering” of multi-directional Antarctic winds – as fast as hurricanes, and filled with geologic debris – can “reduce a granite boulder the size of a couch into sand within 100,000 years.”

[Image: Jackie Dee Grom, Antarctic ventifacts. From Cabinet].

The B-flat Range

A part of me, however, can’t help but re-imagine these weird and violent geologies as sonic landmarks, or accidental musical instruments in the making. You hear them before you see them, as they scream with polar tempests.

A common theme on BLDGBLOG is the idea that natural landscapes could be transformed over time into monumental sound-generation machines. I’ve often thought it would be well worth the effort, for instance, if – in the same way that Rome has hundreds of free public fountains to fill the water bottles of thirsty tourists – London could introduce a series of audio listening posts: iPod-friendly masts anchored like totem poles throughout the city, in Trafalgar Square, Newington Green, the nave of St. Pancras Old Church, outside the Millennium Dome.

You show up with your headphones, plug them in – and the groaning, amplified, melancholic howl of church foundations and over-used roadways, the city’s subterranean soundtrack, reverbed twenty-four hours a day through contact mics into the headsets of greater London – greets you in tectonic surround-sound. London Orbital, soundtracking itself in automotive drones that last whole seasons at a time.

In any case, looking at photos of ventifacts I’m led to wonder if the entirety of Antarctica could slowly erode over millions of years into a musical instrument the size of a continent. The entire Transantarctic Range carved into flutes and oboes, frigid columns of air blasting like Biblical trumpets – earth tubas – into the sky. The B-flat Range. Somewhere between a Futurist noise-symphony and a Rube Goldberg device made of well-layered bedrock.

Where the design of musical instruments and landscape architecture collide.

Mt_Sill-ferrar_dolerites[Image: From a truly spectacular collection of Antarctic images at Ross Sea Info].

Flocks of birds in Patagonia hear the valleys rumble, choked and vibrating with every inland storm, atonal chords blaring like fog horns for a thousand of miles. Valve Mountains. Global wind systems change, coiling through hundreds of miles of ventifactual canyons and coming out the other end, turned round upon themselves, playing that Antarctic instrument till it’s eroded beneath the sea.

In his ultimately disappointing but still wildly imaginative novella, At the Mountains of Madness, H.P. Lovecraft writes about a small Antarctic expeditionary team that stumbles upon an alien city deep in the continent’s most remote glacial valleys. It is a city “of no architecture known to man or to human imagination, with vast aggregations of night-black masonry embodying monstrous perversions of geometrical laws.” Its largest structures are “sometimes terraced or fluted, surmounted by tall cylindrical shafts here and there bulbously enlarged and often capped with tiers of thinnish scalloped disks.”

Even better, “[a]ll of these febrile structures seemed knit together by tubular bridges crossing from one to the other at various dizzy heights, and the implied scale of the whole was terrifying and oppressive in its sheer gigantism.”
More relevant to this post, of course, Lovecraft describes how the continent’s “barren” and “grotesque” landscape – as unearthly as it is inhuman – interacted with the polar wind:

Through the desolate summits swept ranging, intermittent gusts of the terrible antarctic wind; whose cadences sometimes held vague suggestions of a wild and half-sentient musical piping, with notes extending over a wide range, and which for some subconscious mnemonic reason seemed to me disquieting and even dimly terrible.

Perhaps his team of adventurers has just stumbled upon the first known peaks of the B-Flat Range…

Fer-Knobhd-frm-Sol-Rks-CP[Image: Again, from the fantastic collection of Antarctic images at Ross Sea Info].

[For something else also howling an eternal B-flat: “Astronomers in England have discovered a singing black hole in a distant cluster of galaxies. In the process of listening in, the team of astronomers not only heard the lowest sound waves from an object in the Universe ever detected by humans” – but they’ve discovered that it’s emitting, yes, B-flat].