Waste-island Ireland and the ‘necklace of incineration’

No, it’s not Harry Potter 7, but a landscape problem: in a relatively recent article in The New York Times, we discover that Ireland’s garbage collection practices have resulted in the production of a new coastline: “The earthen cliffs near this seaside harbor town have been sporting colorful decorations recently: erosion by the gentle waves of the Irish Sea has exposed the scraggly remants of hundreds of blue, black and yellow trash bags.”
A “roaring black market in garbage collection” has produced this new landscape – or, landscape engineering through waste-management practices. It’s a new surface of the earth made of industrial debris (“twisted wrecks of unidentifiable junked machines”).
As the sea encroaches and the artificial terrain of human rubbish is revealed – the new outer edge of the Irish island – we find not bedrock, not archaeological sites, not even *terra firma*, but a bunch of old computers and kitchen waste.
Think of it as the next millennium’s Skara Brae:

To help counter this formation of a counter-landscape, Ireland is funding “what one newspaper called a ‘necklace of incineration’ around Ireland” – that is, a necklace of incineration plants.
In any case, what coasts we have yet to discover (or build)…

The light/surface fold: advertisements, Steven Holl, et cetera

I noticed several years ago that the pine forests outside Chapel Hill, NC, fill with a strange white light in winter, and not for the obvious reasons that, yes, it’s winter, so the leaves are all gone: ergo more light.
Nope: it’s because the angle that the earth takes in relation to the sun has changed, as it does every winter, and so the forests have literally begun to glow: the sun has begun hitting them at a different angle.
Winter, in this regard, is really a question of spherical geometry, angles, and trigonometric effects at long distances: sun–>earth/angle of incidence (or whatever). One of winter’s more interesting side effects, then, is the way that it transforms shadows – making them longer and thinner – while simultaneously illuminating objects from the side. This brings out details that go unremarked – and unlit – in other seasons.
All of these written reflections having been inspired by this photograph:

What’s interesting here is how the billboard enlists sun/earth trigonometry in the selling of suntan lotion. Who’da guessed?
But so I got to thinking about what would happen if you did more of that with architecture, if you learned a spatio-architectural lesson from however brief a glance at that billboard.
The deliberate shadow-machining effects of different times of day, say, in the vein of Steven Holl: entire hallways and galleries and courtyards and milled surface details could become visible only at specific hours, perhaps in pre-patterned ways.
Like an inhabitable sundial, you would always know it was 3 o’clock in the afternoon because the little grilled incisions in the plaster of the upstairs walls just appeared. They were invisible before that, and will be invisible again: but now is their moment in the light…
Or you know it’s noon because there are suddenly no shadows of any kind in your courtyard: you’ve angled everything perfectly for that moment. The space folds in on itself, reboots back to undisturbed white, and at 12:01pm the shadows reappear.
I just mean to point out the connection, here, between architecture and astronomy – via spherical, planetary trigonometrics – not because I’m the first to do so or even because it’s ultimately all that interesting, but because every little mundane trace – mere shadows – can be seen as an indication of literally superior, astro-stellar relationships.
Every shadow, if you do the math right, if you know the angles and the trig and the spherical velocity of objects in space, is actually an indication of the time of day – in a calendar that precedes Swatch and Swiss Army and electricity and even biological organisms as such.
And every kid with a flashlight – every person with a match or candle – every architect, even – can participate. Everything you build can be – and is automatically – an astronomical event.

Grant Morrison’s Manhattan

Grant Morrison’s *Manhattan Guardian* comic book series popped up in The New York Times this past weekend. In making/drawing it, Morrison was ‘attracted by the fun of curating a personal version of New York,’ and he ‘laced [the city] with architectural marvels that were proposed but never actually constructed’ – including buildings by Gaudi, Hans Hollein, Lloyd Wright (‘Ellis Island Key’), and even Robert Moses (the Mid-Manhattan Expressway).

As Morrison descibes it, he wanted to create ‘a more exalted New York,’ using speculative architecture.

Psychovideography / ‘Fortress Urbanism’

And so now New York City may attempt to install the total cinematic dream that has consumed London’s private security firms for the past three decades, lost as they are in the Warholian ecstasy of filming every last centimeter of urban space, week after month after year, in what is surely the largest outright expenditure of cinematic ambition since… perhaps since film began. That dream is known as the ‘ring of steel’ – part of what I call ‘military urbanism,’ and what is referred to by Eric Lupton, in The New York Times, as ‘fortress urbanism.’
‘For more than a century now,’ we read, ‘winged dragons flanking a shield have guarded each entrance to the City of London. In recent decades, this coat of arms has been reinforced with an elaborate anti-terrorism apparatus known as the “ring of steel,” consisting of concrete barriers, checkpoints and thousands of video cameras. City planners call the system, set up to defend against bombings by the Irish Republican Army, “fortress urbanism.”‘

It would be interesting to put ‘fortress urbanism’ into the context of utopia/dystopia, were that not 1) immediately obvious, and 2) less interesting than going further, into the realm of a generalized psychovideography of urban space.
When Alison and Peter Smithson write that ‘today our most obvious failure is the lack of comprehensibility… in big cities,’ and that the very ‘aim of urbanism is comprehensibility’, we should perhaps reconsider the proclaimed purpose of public surveillance.

The 24-hour closed-circuit voyeurism we impose upon the voidscape of empty car parks and untraveled motorways all around us is already a response to the directionless sprawl of 21st century space. As such, security cameras are the next phase of an advanced urban sociology, a vanguard attempt at understanding the limits, contents and directions of our cities; these cameras have nothing to do with security – unless, of course, cognitive security is the issue at hand.
But to introduce a new term here, we would find ourselves discussing not *psychogeography* – that outdated fetish of a new crop of uninspired theses, from Princeton to the AA – but *psychovideography*, the videographic psyche of the city. If security firms are the new providers of our urban unconscious, a hundred thousand endless films recording twenty-fours a day, indefinitely, then we should perhaps find that the outdated methodologies of the psychogeographers have hit an impasse. The geo- is now in the video-, as it were, and the -graphy survives just the same. Throw in some 24-hour psycho-, and we begin to see the city through the lens of an unacknowledged avant-garde: a subset of the film industry whose advance front has taken on the guise of security.

The security industry, in this case, finds itself a (presumably unwitting) heir to John Cage. As Cage himself wrote, ‘There is no such thing as an empty space or an empty time. There is always something to see, something to hear.’ London’s private security firms could hardly agree more passionately – and that surveillant/cinematic enthusiasm now spreads to New York and Chicago.
J.G. Ballard: ‘He had spent the past days in a nexus of endless highways, a terrain of billboards, car marts and undisclosed destinations.’
Iain Sinclair: ‘The landscape is provisional.’
The response: psychovideography. Endless filming. Install the umbrella of a total cinema and move freely into the next phase of urbanism: fortress urbanism.
‘Security’ is a red herring; we are witnessing instead the triumphal rearing-up of an unconscious cinematic fantasy.

Accordingly, we find ourselves, everyday, living more fully than ever before in the utopia of someone else’s inescapable, fortified film set.

The Department of Homeland Cinematics.


Some ideas for forestry projects (arborial ethicists beware):

<1> Attach thin vibrating wires to the branches of two oppositely-growing trees. As the wires are stretched due to natural tree growth – or given slack – the wind blowing across them will produce different notes. A tree that began as, say, C-major will become B-flat. This could be done to a variety of trees, using a variety of wires of various lengths and thicknesses, so as to produce an acres-wide arborial instrument which never ceases to change its drone.

<2> Attach a large stone to a system of ropes and pulleys. Attach the other ends of these ropes and pulleys to the branches of growing trees, and then again, onward, to the branches of other growing trees. As the branches grow, if the force has been correctly distributed, the stone will be lifted off the ground.
<2a> Once the stone leaves the ground, another, secondary, mechanical process could come into effect: say a turning wheel that tightens and/or otherwise alters the positions of the original ropes and pulleys.
<2b> This could start-off further mechanical processes – perhaps a bag of seeds is upended and, a dozen years later, new trees grow, entering the system.

<3> Plant a new grove using only one tree species, and rope the branches of all the trees together according to a carefully architected pattern. Return over the years as the trees grow to tighten the ropes, pulling and bending the branches into their desired shape or mold. Eventually the trees will form a complicated network of hallways whose canopies are interlaced branches. Domes, arches, etc., could all be created.

[Images from Pruned].

<4> A rope is attached to the top of a newly-planted tree. The other end of the rope is attached to a complex spring-and-coil machine that includes within it a pre-sharpened axe. The axe is attached to a long handle, a handle whose length is the exact distance between the machine and the tree. Further, the axe is only barely restrained from swinging by a small lever. Once the tree, several years on, has reached a certain height, the rope’s tension triggers the machine, lifting that small lever, and the axe swings round, burying itself into the tree’s trunk: killing – perhaps felling – the tree.

Tropo-electricity: or, how to turn the sky into a machine

In ‘Windmills in the Sky‘ we learn that: ‘Australian engineer Bryan Roberts wants to build a power station in the sky – a cluster of windmills soaring 15,000 feet in the air’ in the troposphere, where ‘there is enough energy in high-altitude winds to satisfy the world’s [electrical] demands.’ This resource is referred to as ‘high-altitude wind power’. The machines would ‘use GPS technology to maintain the crafts’ vertical and horizontal location to within a few feet. The craft will be brought to ground once a month or so for maintenance checks.’
An image which – perhaps to my discredit – immediately makes me think of films by Hayao Miyazaki.

But there are other angles to consider, including a sky full of hovering tropo-electric generators as: 1) atmospheric installation art; 2) tropotechnical engineering (v. geotechnics); 3) a fantastic idea for an animated science-fiction movie (again, viz Hayao Miyazaki);

4) a kind of retro-futurist Red Baron-era *Don Quixote* remake; 5) a nuts place to get a summer job, living on one of the windmills and making repairs from within the black skies of the troposphere; 6) something Rimbaud would’ve come up with while sipping absinthe; 7) etc.
Or 8), of course, lucky 8): how to turn the sky into a machine. Atmospheric irrigation, or the productive redirection of the planet’s rivers of air.
Or 9), too: a poetic insight into the otherwise unrecognized resources of energy and power all around us. Poetic engineering. Engineering as 3-dimensional poetry.

Unworkable devices / Archaeological machines

Because they could: Patents for unworkable devices. Why not patents for unworkable architecture?
Speaking of which: during an excavation in London, a team from the Museum of London uncovered part of a hydrologic machine that they then actually built using new parts. I’m reminded here of the (otherwise terrible) Stephen King novel, *The Tommyknockers*, in which a woman finds a small piece of metal in her backyard woods; while kicking away the dirt she realizes it is merely the outer edge of an alien spacecraft that crashed there hundreds of thousands of years before… The book rapidly goes downhill from there.

Kristian Birkeland’s magnetic museum: or, ‘sunspots like no one else can do better’

Kristian Birkeland, the first scientist correctly to deduce the solar-magnetic origin of the Northern Lights, at one point was obsessed with building an experimental device here on Earth that could reproduce those polar-bound auroral effects.

Though he started off only vaguely over-ambitious, a combination of hyper-caffeination in the Egyptian desert and addiction to veronal produced BLDGBLOG-worthy architectural hubris I feel should be quoted here in full. So, bearing in mind that this is a true story, as told by Lucy Jago’s book The Northern Lights:

1) Birkeland’s vacuum chamber was a ‘machine in which to recreate many phenomena of the solar system beyond the Earth. He drew up plans for a new machine unlike anything that had been made before.

…[L]ike a spacious aquarium, [the box] would provide a window into space. The box would be pumped out to create a vacuum and he would use larger globes and a more powerful cathode to produce charged particles. With so much more room he would be able to see effects, obscured in the smaller tubes, that could take his Northern Lights theory one step further – into a complete cosmogony, a theory of the origins of the universe. (…) All sorts of beautiful solar phenomena could recreated this way, such as the sun’s corona, the shining layers of the sun’s outer atmosphere, usually visible only during a total eclipse. He could reproduce sunspots that moved across the surface of the terrella [the electrical globe-mechanism inside the vacuum chamber itself]… With this extraordinary machine Birkeland was able to simulate Saturn’s rings, comet tails, and the Zodiacal Light. He even experimented with space propulsion using cathode rays. Sophisticated photographs were taken of each simulation, to be included in the next volume of Birkeland’s great work, which would discern the electromagnetic nature of the universe and his theories about the formation of the solar system.

The ensuing period of nearly hypnotised overwork is referred to later as ‘Birkeland’s immersion into the universe of his vacuum chamber’.

2) But then he got ambitious. In a letter written from a hotel in Aboukir, Egypt, where Birkeland’s addiction to caffeine and veronal was driving him insane – along with the Saharan sun – he wrote: ‘And, finally, I am going to tell you about a great idea I have had; it’s a bit premature but I think it will be realised. I am going to get some money from the state and from friends, to build a museum for the discovery of the Earth’s magnetism, magnetic storms, the nature of sunspots, of planets – their nature and creation. On a little hill I will build a dome of granite, the walls will be a metre thick, the floor will be formed of the mountain itself and the top of the dome, fourteen metres in diametre, will be a gilded copper sphere. Can you guess what the dome will cover? When I’m boasting I say to my friends here “next to God, I have the greatest vacuum chamber in the world.” I will make a vacuum chamber of 1,000 cubic metres and, every Sunday, people will have the opportunity to see a ring of Saturn ten metres in diametre, sunspots like no one else can do better, Zodiacal Light as evocative as the natural one and, finally, auroras… four metres in diametre. The same sphere will serve as Saturn, the sun, and Earth, and will be driven round by a motor.’

So, aside from conjuring up images somewhere between Frankenstein, City of Lost Children and Batman, perhaps, Birkeland’s mountaintop cosmogonic laboratory brings up the interesting possibility of modeling – even reproducing – the universe through architecture. Or, at least, through a combination of architecture and machinery (which is what architecture always was in the first place).

In any case, clue the United States Department of Energy in on this and you’ll – wait: they’ve already done it. It’s called Yucca Mountain.

Perhaps a subterranean tour of the carved radioactive vaults of Yucca Mountain will be available to someone in a few ten-thousand years. By which time Birkeland’s almost H.P. Lovecraftian visions of simulating the birth of the universe atop a granite mountaintop, beneath a copper dome, will be long forgotten.

Oh, one more thing – in fact, two more things: 1) note that cathode rays, which Birkeland used in his vacuum chambers, are also what make non-digital television possible (raising the intellectually stimulating idea that television, in and of itself, as a technical object, is a model of the cosmos); and 2) note that Birkeland says ‘next to God, I have the greatest vacuum chamber’, implying of course that the universe already is a vacuum chamber, in which case one could argue – at least rhetorically – that we are living not in the universe as such but in what is already the experimental reproduction of the universe, a universe which lies elsewhere. The universe itself, then, the universe we run tests on and live within, is just a model, a prototype even. But that’s neither here nor there…